
Confidential Computing via Multiparty Computation
and Trusted Computing

Juri Dispan
945106

Master’s Thesis
VS-2023-05M

Examined by
Prof. Dr. rer. nat. Frank Kargl
Prof. Dr.-Ing. Franz J. Hauck

Supervised by
M.Sc. Dominik Meißner

Dr. rer. nat. Benjamin Erb

Institute of Distributed Systems
Faculty of Engineering, Computer Science and Psychology

Ulm University

26 April 2023

cbna

© 2023 Juri Dispan

Issued: 26th April 2023

cbna This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike License.

To view a copy of this license, visit

https://creativecommons.org/licenses/by-nc-sa/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

https://creativecommons.org/licenses/by-nc-sa/4.0/

I hereby declare that this thesis titled:

Confidential Computing via Multiparty Computation and Trusted
Computing

is the product of my own independent work and that I have used no sources

or materials other than those specified. The passages taken from other works,

either verbatim or paraphrased in the spirit of the original quote, are identified

in each individual case by indicating the source.

I further declare that all my academicworkwaswritten in line with the principles

of proper academic research according to the official “Satzung der Universität

Ulm zur Sicherung guter wissenschaftlicher Praxis” (University Statute for the

Safeguarding of Proper Academic Practice).

Ulm, 26 April 2023

Juri Dispan, student number 945106

ABSTRACT

In the wake of the social sciences’ so-called replication crisis, researches in-

creasingly strive to adopt methods preventing questionable research practices

in empirical studies, e. g., study preregistration and full publication of survey

datasets. However, publication of survey responses poses a serious threat to

the privacy of study participants. Previous work has addressed this issue while

maintaining protection against questionable research practices, but either relies

on Trusted Execution Environments (TEEs), which have been shown to be suscept-
ible to various kinds of attacks, or on Secure Multiparty Computation (SMPC),

requiring a honest majority of participating parties. In this work, we combine

TEEs with SMPC in a platform for conducting empirical studies that provides

strong guarantees for the privacy of participants. Survey responses are split

into secret shares, which are distributed among a number of TEE-protected

computation parties. Statistical analysis of responses is performed as an SMPC.

The platform is secure against a wider range of attackers than related work,

i. e., against attackers either able to circumvent the utilised TEE or controlling a

majority of the computation parties. We implement a prototype of this platform

and evaluate its computational performance against alternative approaches. We

show that it is suitable for conducting real-world privacy-preserving empirical

studies, placing only minimal computational load on survey participants. Its

performance in conducting statistical analysis is inferior to its alternatives, re-

quiring≈ 10min for performing one two-sample t-test. However, we argue that

this is sufficient for real-world settings. Additionally, we list several approaches

with which performance can be enhanced.

v

contents

CONTENTS

Abstract v

Contents vii

List of Figures ix

List of Tables x

Acronyms xi

I Background 1

1 Introduction 3

2 Fundamentals 7
2.1 Secret Sharing . 7

2.2 Secure Multiparty Computation 9

2.3 Trusted Execution Environments 15

3 Enabling Technologies 23
3.1 Enabling Secure Multiparty Computation 23

3.2 Enabling Intel SGX . 25

4 Related Work 29
4.1 Improving SMPC Performance through TEE 29

4.2 Enhancing Privacy in Empirical Studies 30

II Contribution 33

5 Approach 35
5.1 Using SGX for Hardening the Privacy of Empirical Studies . . 35

5.2 Using SMPC for Hardening the Privacy of Empirical Studies . 36

5.3 Main Contribution: Combining TEEs and SMPC 39

6 Implementation 45
6.1 Requirements . 45

6.2 Choice of Technology . 45

7 Evaluation 49
7.1 Methodology . 49

7.2 Results . 52

8 Discussion 61
8.1 Findings . 61

8.2 Limitations & Future Work . 66

vii

contents

9 Summary & Conclusion 69
9.1 Summary . 69

9.2 Conclusion . 69

Bibliography 71

viii

list of figures

L I ST OF F IGURES

2.1 General Architecture for Trusted Computing 16

2.2 Life-Cycle of an SGX Enclave . 19

3.1 General Architecture of Jiff . 24

5.1 Publishing and Conducting a Study through PeQES 37

5.2 Publishing a Study through an SMPC-based Platform 38

5.3 Conducting a Study through an SMPC-based Platform 39

7.1 Architectures of the Implemented Prototypes 50

7.2 Results of Experiment E1: Compute Times 54

7.3 Results of Experiment E1: Open Times 55

7.4 Results of Experiment E3 . 58

8.1 Results of Profiling SMPC-SGX . 62

ix

list of tables

L I ST OF TABLE S

5.1 Attack Scenarios on Platforms for Securely Conducting Empirical

Studies . 43

7.1 Results of Experiment E1: Compute Times 55

7.2 Results of Experiment E2 . 56

7.3 Results of Experiment E3 . 57

7.4 Results of Experiment E4 . 59

x

ACRONYMS

AEX Asynchronous Exit

DSL Domain-Specific Language

EDMM Enclave Dynamic Memory Management

EPC Enclave Page Cache

EPCM Enclave Page Cache Map

HE Homomorphic Encryption

LE Launch Enclave

PeQES Platform for privacy-enhanced Qualitative Empirical Studies

PRM Processor-Reserved Memory

SDK Software Development Kit

SECS SGX Enclave Control Structure

SGX Software Guard Extensions

SMPC Secure Multiparty Computation

TCB Trusted Computing Base

TEE Trusted Execution Environment

TTP Trusted Third Party

xi

Part I

Background

1

1INTRODUCT ION

Statisticians should take appropriate measures to prevent their data
from being published or otherwise released in a form that would
allow any subject’s identity to be disclosed or inferred.

— international statistical institute (1985),

declaration on professional ethics [56, §4.6]

Science largely relies on empirical methods for advancing knowledge: scientists

make hypotheses and collect data by making observations. If the data suggest one

or more hypotheses to be true with large enough probability, these hypotheses

are accepted; the others are rejected. This process is called an empirical study.
In recent years, psychology as well as other social sciences have suffered a so-

called replication crisis [106]. It was discovered that a surprisingly large number

of results could not be reproduced, i. e., hypotheses accepted through previous

studies did not hold true when applied to new observations [90]. Additionally,

cases of scientific fraud [19, 117] and questionable research practices, e. g.,HARK-
ing [62], in which hypotheses are formed specifically to fit previously collected

data, and p-hacking [107, 51], in which the significance of results is artificially

raised through bogus use of statistical methods, became known [57, 116].

In order to be able to conduct more robust studies, an open research process

has been suggested by the Center for Open Science. This process aims to prevent

questionable research practices and ensure scientific quality. The idea of this

process is that researchers ought to publicly preregister studies, i. e., announce
their hypotheses, methodology, planned sample size and analyses prior to col-

lecting data. After data have been collected and analyses have been performed,

researchers should make these data publicly available. This process prevents

a range of questionable research practices and improves reproducibility. It is

aimed at restoring trust in scientific results, as it enables the scientific community

to verify that no p-hacking or HARKing has occurred [106].

However, as social sciences by definition study the nature of human beings,

their research process necessarily requires observation of such. In psychology,

data collection is regularly performed through the usage of surveys, in which

subjects self-report aspects of their inner and outer condition. Needless to say,

such self-reports contain (sometimes highly) personal data. In order to raise

subjects’ willingness to perform self-reporting and in order to comply with legal

requirements, data are mostly collected in an anonymised way, in which obvious

personal identifiers such as name or street address are not captured or removed

as soon as possible [42, 47].

3

introduction

Anonymity alone is by no means a guarantee of confidentiality. A
particular configuration of attributes can, like a fingerprint, fre-
quently identify its owner beyond reasonable doubt.

— international statistical institute (1985),

declaration on professional ethics [56, §4.6]

It has, however, been shown that this is insufficient for making linkage of

survey responses to specific persons impossible. In many cases, a combination

of a small number data points from a survey response suffices to identify the

responding individual, even if these data points contain no personally identifiable

information by themselves [42]. This is true for demographic attributes
1
, but also

non-demographic and seemingly benign ones such as writing style [87] or movie

preferences [86]. Published datasets may thus be subject to de-anonymisation

attacks even if all but the target data are removed. In spite of this fact, willingness

among researchers to share datasets grows [42].

The widespread use of computers is often regarded as a threat to
individuals and organisations because it provides new methods of
disclosing and linking identified records. On the other hand, the
statistician should attempt to exploit the impressive capacity of
computers to disguise identities and to enhance data security.

— international statistical institute (1985),

declaration on professional ethics [56, §4.6]

In light of the potentially grievous privacy impact of data publication, differ-

ent approaches for ensuring scientific integrity have been proposed. Meißner

et al. [81] propose a workflow that depends on a Platform for privacy-enhanced
Qualitative Empirical Studies (PeQES) for conducting surveys. Using this work-
flow, researchers are required to preregister their study before data collection,

i. e., make available hypotheses, study design and planned analyses. The preregis-

tration is presented to both the scientific community and an ethics board, which

needs to approve of the planned form of the study. If approval is given, the

study specification is uploaded to PeQES, which autonomously collects survey

responses from study participants and performs statistical analyses on these data.

Thereafter, the researcher is provided with the results of the analyses. The col-

lected survey responses never leave the trusted platform. This approach ensures

scientific integrity without the need to publish datasets of potentially personally

identifiable information.

PeQES relies on Trusted Execution Environments (TEEs) for ensuring the
confidentiality of survey responses and the integrity of the statistical analyses.

However, this requires trusting the respective hardware’s manufacturer. Further,

TEEs cannot offer absolute security. Some TEEs provide no protection against

specific classes of attack (e. g., Intel Software Guard Extensions (SGX) does not
protect against side-channel-based attacks [34]). Additionally, TEEs can (and

regularly do) contain security vulnerabilities [115, 26, 74, 125, 28].

For this reason, this work explores a different approach for implementing a

secure platform through which quantitative empirical studies can be conducted

in a privacy-friendly manner. The proposed platform uses both TEEs and Secure

1 E. g., 87% of the United States’ population are uniquely identifiable through a combination of

ZIP-code, gender and date of birth [111]; 99.98% are identifiable through a combination of 15
demographic attributes [97].

4

Multiparty Computation (SMPC) in order to provide strong guarantees regarding

the confidentiality of survey responses. We evaluate this approachwith regards to

security and efficiency. In particular, we answer the following research questions:

RQ1: What are the security guarantees provided by the proposed concept?

RQ2: How efficient is the proposed concept compared to baseline imple-

mentations using only hardware enclaves/only SMPC to secure the plat-

form?

RQ3: Which existing technologies are suitable for implementing the pro-

posed concept?

The remainder of this work is structured as follows. Chapter 2 introduces

the mathematical concepts of secret sharing, SMPC, and TEEs. In Chapter 3, we

introduce technologies that enable usage of these concepts in practice. Chapter 4

discusses related work, in particular attempts at strengthening privacy in empir-

ical studies or data analysis in general through use of either TEEs or SMPC. Our

approach for achieving the same goal through a combination of TEEs and SMPC

is described in Chapter 5. In order to evaluate our approach in terms of com-

putational performance, we implement a prototype. Our choice of technology

and implementation details of this prototype are discussed in Chapter 6. The

experimental apparatus and results of the evaluation are presented in Chapter 7.

We discuss these results, their implications and limitations as well as possible

future work in Chapter 8. We conclude our work in Chapter 9.

5

2FUNDAMENTALS

In this Section, we introduce relevant mathematical and technological concepts.

Specifically, we describe secret sharing (Section 2.1), SMPC (Section 2.2) and

TEEs (Section 2.3).

2.1 secret sharing

Secret sharing describes the act of splitting some data𝐷 into 𝑛 pieces𝐷1 , . . . , 𝐷𝑛

such that reconstruction of 𝐷 is only possible with knowledge of 𝑘 or more of

these pieces. Any combination of 𝑘−1 or less pieces yields no information about

𝐷 at all. A scheme describing such operations is called a (𝑛, 𝑘) secret sharing
scheme.

(𝑛, 1) secret sharing schemes and (𝑛, 𝑛) secret sharing schemes can be con-

structed trivially. A (𝑛, 1) secret sharing scheme is accomplished by setting

𝐷 = 𝐷1 = 𝐷2 = · · · = 𝐷𝑛 ; a (𝑛, 𝑛) secret sharing scheme is realised by select-

ing randomly𝐷1 , . . . , 𝐷𝑛 such that
∑𝑛

𝑖=1 𝐷𝑖 = 𝐷. A more general (𝑛, 𝑘) secret
sharing scheme is proposed by Shamir [104] and discussed in Subsection 2.1.1.

2.1.1 shamir’s secret sharing

Shamir’s secret sharing [104] is a technique for constructing (𝑛, 𝑘) secret sharing
schemes for any 1 ≤ 𝑘 ≤ 𝑛. It is based on the fact that any polynomial 𝑞(𝑥)with
deg(𝑞) = 𝑘 − 1 is unambiguously defined by 𝑘 points (𝑥1 , 𝑞(𝑥1)), (𝑥2 , 𝑞(𝑥2)),
. . . , (𝑥𝑘 , 𝑞(𝑥𝑘)) when 𝑥𝑖 ≠ 𝑥 𝑗 ∀𝑖 ≠ 𝑗.

Consider a secret date 𝐷. We aim to share 𝐷 among 𝑛 parties 𝑃1 , . . . , 𝑃𝑛

such that any set of no less than 𝑘 parties can reconstruct 𝐷. In order to accom-

plish this, Shamir proposes the following algorithm: First, choose a large prime

𝑝 > 𝐷. The value of 𝑝 can (andmust) be made public; all of the following calcula-

tions are performed over the finite fieldℤ𝑝 . We then construct a polynomial of de-

gree 𝑘−1, whichwe call 𝑞(𝑥). As a polynomial, 𝑞(𝑥) = 𝑎0+𝑎1𝑥+· · ·+𝑎𝑘−1𝑥𝑘−1
.

We choose 𝑎0 := 𝐷; the remaining coefficients 𝑎1 , . . . , 𝑎𝑘−1 are randomly

chosen from a uniform distribution overℤ𝑝 .

𝐷 is then split into 𝑛 shares by determining 𝑛 distinct points located on

the polynomial. More precisely, the shares are given by 𝐷𝑖 = (𝑖 , 𝑞(𝑖)), 𝑖 ∈
{1, . . . , 𝑛}. These shares are now distributed among the parties, i. e., 𝑃𝑖 receives

(𝑖 , 𝑞(𝑖)) ∀𝑖 ∈ {1, . . . , 𝑛}.
Recovering 𝐷 is achieved by reconstructing 𝑞 through interpolation and

evaluating 𝑞(0). Because 𝑞 has degree 𝑘 − 1, this process requires the secret
shares of at least 𝑘 participants. Consider the case of a group of 𝑘 participants

𝑃𝑖1 , . . . , 𝑃𝑖𝑘 that want to collaborate in order to restore 𝐷 from their secret

shares 𝐷𝑖 𝑗 = (𝑖 𝑗 , 𝑞(𝑖 𝑗)), 𝑗 ∈ {1, . . . , 𝑘}. The group can calculate 𝑞’s coefficients

𝑎0 , . . . , 𝑎𝑘−1 by forming a set of 𝑘 linear equations:

7

fundamentals

𝑎0 + 𝑎1 · 𝑖1 + · · · + 𝑎𝑘−1 · 𝑖1 = 𝑞(𝑖1)
𝑎0 + 𝑎1 · 𝑖2 + · · · + 𝑎𝑘−1 · 𝑖2 = 𝑞(𝑖2)

...

𝑎0 + 𝑎1 · 𝑖𝑘 + · · · + 𝑎𝑘−1 · 𝑖𝑘 = 𝑞(𝑖𝑘)

This system can be solved by performing the well-known Gaussian Elim-
ination algorithm [38]. Because the matrix representation of this system is a

Vandermonde matrix and 𝑖 𝑗 ≠ 𝑖ℎ ∀𝑗 ≠ ℎ, its rows are linearly independent [110].

Hence, the system has a unique solution for 𝑎0 = 𝑞(0) = 𝐷.

In practice, interpolation is typically done via Lagrange interpolation, i. e.,

through Equation 2.1.

𝑞(𝑥) =
𝑘∑

𝑠=1

𝑞(𝑖𝑠)
∏
1≤ 𝑗≤𝑘
𝑗≠𝑠

𝑥 − 𝑖 𝑗

𝑖𝑠 − 𝑖 𝑗
(2.1)

If we evaluate 𝑞 at 𝑥 = 0 (as 𝐷 = 𝑞(0)), we arrive at Equation 2.2, which is

an explicit formula for 𝐷 [38, 110].

𝐷 = 𝑞(0) =
𝑘∑

𝑠=1

𝑞(𝑖𝑠)
∏
1≤ 𝑗≤𝑘
𝑗≠𝑠

𝑖 𝑗

𝑖 𝑗 − 𝑖𝑠
(2.2)

Example Suppose we have a secret value 𝐷 = 8080 which we would like to
share amongst four parties 𝑃1 , . . . , 𝑃4 such that any three parties can recover

𝐷. We do this via a (4, 3) Shamir’s secret sharing scheme using 𝑝 = 19 991 (i. e.,
all calculations are performed inℤ19 991).

Splitting 𝑫 We chose a random polynomial 𝑞 of degree 𝑘 − 1 = 2 by set-
ting 𝑎0 = 𝐷 = 8080 and selecting coefficients 𝑎1 = 4638 and 𝑎2 = 17 126 ran-
domly from a uniform distribution overℤ19 991. Four secret shares 𝐷1 , . . . , 𝐷4

are then given by (1, 9853), (2, 5896), (3, 16 200), (4, 783).
These shares are then distributed among the parties such that (only) 𝑃𝑖 gains

knowledge of 𝐷𝑖 for 𝑖 ∈ {1, . . . , 4}.

Recovering 𝑫 Any set of parties 𝑆 ⊆ {𝐷1 , 𝐷2 , 𝐷3 , 𝐷4} where |𝑆 | ≥ 3
can combine their secret shares to gain knowledge of 𝐷. Suppose that 𝑆 =

𝐷1 , 𝐷3 , 𝐷4. We define 𝑖1 = 1, 𝑖2 = 3, 𝑖3 = 4 and recover 𝐷 by applying

Equation 2.2:

8

2.2 secure multiparty computation

𝐷 =

𝑘∑
𝑠=1

𝑞(𝑖𝑠)
∏
1≤ 𝑗≤𝑘
𝑗≠𝑠

𝑖 𝑗

𝑖 𝑗 − 𝑖𝑠

= 𝑞(𝑖1)
𝑖2

(𝑖2 − 𝑖1)
𝑖3

(𝑖3 − 𝑖1)
+ 𝑞(𝑖2)

𝑖1

(𝑖1 − 𝑖2)
𝑖3

(𝑖3 − 𝑖2)

+ 𝑞(𝑖3)
𝑖1

(𝑖1 − 𝑖3)
𝑖2

(𝑖2 − 𝑖3)

= 𝑞(1) 3

(3 − 1)
4

(4 − 1) + 𝑞(3) 1

(1 − 3)
4

(4 − 3) + 𝑞(4) 1

(1 − 4)
3

(3 − 4)
= 9853 · 2 + 16 200 · (−2) + 783 · 1
= 8080

2.2 secure multiparty computation

SMPC is a cryptographic primitive that allows a number of connected parties to

evaluate a function in a secure manner [76]. The problem SMPC solves is the

following one [122]: A group of 𝑛 parties wishes to jointly evaluate a function.

Each party is in possession of one secret input. Can the group evaluate the

function in such a way that no party must reveal their input (or any information

about their input) to other parties?

It turns out that every computable function can be evaluated as described

above [46]. Secure computation is even possible if some parties collude in order

to reveal information about an honest party’s input or to change the result of the
computation. In this case we say that the colluding parties are under the control

of an adversary and call these parties corrupted.
In the following Section, we give an overview about the terminology used

to describe protocols for SMPC, describe different attacker models and give an

example of a protocol for general SMPC.

2.2.1 example: a simple smpc protocol

In order to illustrate SMPC, we give a practical example of a protocol that can

be used to perform a real-life multiparty computation: Consider a group of

𝑛 employees (𝑃1 , . . . , 𝑃𝑛) that want to calculate the mean of their incomes.

As workplace culture forbids revealing one’s salary to others, the individual

employees’ incomes (𝑠1 , 𝑠2 , . . . , 𝑠𝑛) must remain private. In order to still be able

to compute the average income, the employees execute the following protocol:

Employee 𝑃1 chooses a random number 𝑟 . They compute𝑚1 = 𝑟 + 𝑠1
𝑛 and send

𝑚1 to 𝑃2. Employee 𝑃2 computes𝑚2 = 𝑚1 + 𝑠2
𝑛 and sends𝑚2 to 𝑃3. Employee

𝑃3 calculates 𝑚3 = 𝑚2 + 𝑠3
𝑛 and sends it to 𝑃4. Essentially, each employee adds

their salary (divided by 𝑛) to the message they receive and sends this sum to the

next employee. Eventually, employee 𝑃𝑛 sends 𝑚𝑛 (= 𝑟 +∑𝑛
𝑖=1

𝑠𝑖
𝑛) to 𝑃1. Since

𝑃1 knows 𝑟 , they can easily calculate 𝑚𝑛 − 𝑟 = 1
𝑛

∑𝑛
𝑖=1 𝑠𝑖 , which is the mean

salary. 𝑃1 must then reveal this result to the other employees, completing the

multiparty computation [33, 24].

9

fundamentals

Given such a protocol, one might ask whether or not this procedure can

be considered secure. Indeed, the protocol guarantees the confidentiality of the

parties’ inputs in the presence of at most one corrupted party. However, no such

guarantee exists against an adversary controlling two parties. Consider the case

where party 𝑃𝑖 and 𝑃𝑖+2 are corrupted. Together, parties know the values 𝑚𝑖

and 𝑚𝑖+1. Since 𝑚𝑖+1 = 𝑚𝑖 + 𝑠𝑖+1
𝑛 , party 𝑃𝑖+1’s salary 𝑠𝑖+1 can be computed via

𝑠𝑖+1 = 𝑛 · (𝑚𝑖+1 −𝑚𝑖). Further, party 𝑃1 can trivially perform a denial of service
attack by not publishing the result of the computation. The protocol ensures

the participants’ privacy only against an adversary controlling a single party,

but is susceptible to denial-of-service attacks by such an attacker. We therefore

say that the protocol is not secure against more than one corrupted parties and

defer the definition of this adjective to Subsection 2.2.2. In Subsection 2.2.4, we

introduce SMPC protocols that are more general and provide much stronger

security guarantees than the example protocol introduced above.

2.2.2 security

In order to analyse and compare protocols for SMPC, a precise definition of

the term security is needed. The standard definition as of today [27] is called the

ideal/real simulation paradigm. Consider an ideal world, in which an incorruptible
Trusted Third Party (TTP) exists. In order to perform an SMPC of some function,

the parties send their inputs to this TTP. The TTP computes the result of the

function locally and provides each party with its output. As the individual parties

never communicate with each other and the TTP is incorruptible, an adversary

can learn no more than the inputs and outputs of the corrupted parties. It cannot

modify the computation’s results (apart from modifying the corrupted parties’

inputs before computation starts) and cannot perform a denial of service attack.

We now define a protocol for multiparty computation as being secure if

executing it amounts to emulating the ideal world. A protocol is said to emulate

the ideal world if the following condition is true: for every output distribution

that can be achieved by any adversary in the protocol under test there exists an

adversary in the ideal model that can perform actions to achieve (essentially) the

same output distribution. In other words: a secure protocol only permits the

attacker to perform attacks that are also possible in the ideal model. Since no

attacks are possible in the ideal model, neither are attacks on a secure real-world

protocol [27, 76].

This notion of security encompasses the following properties [76]:

1. Privacy: No party learns more than its output. Depending on the compu-

tation at hand, information on the other parties’ inputs might be deduced

from the output. For example, an SMPC between two parties calculating

the sum of their inputs inevitably enables the parties to calculate the other

party’s input.

2. Correctness: The result each party receives is guaranteed to be correct.

Adversaries cannot influence the result of computations in a different way

than to modify their controlled parties’ inputs.

3. Independence of Inputs: The inputs of corrupted parties are chosen inde-

pendently from the inputs of honest parties. For example, take the case

10

2.2 secure multiparty computation

of an online auction using SMPC to determine the highest bid. Given

independence of inputs, an attacker cannot generate a bid that is higher

than the other parties’ without knowing their bids.

4. Guaranteed Output Delivery: Corrupted parties cannot perform denial

of service attacks and thus prevent honest parties from receiving their

outputs.

5. Fairness: Either every party receives their output, or no party does. This

property is implied by property 4, however, fairness does not imply prop-

erty 4.

These five properties can be seen as (non-sufficient) requirements for a

protocol to be called secure. In some applications, however, the requirements of

fairness and guaranteed output delivery are dropped. This can either be because

constructing a fair protocol is impossible for the application in question (e. g.,

for coin tossing [32]) or because requiring fairness or guaranteed output delivery

would diminish performance. Protocols that omit these two requirements are

called secure with abort [76].

2.2.3 possible attacker models

In order to analyse a protocol for multiparty computation regarding its security,

one must define what actions the adversary is capable of. This definition is then

called an attacker model. Such a model has twomain aspects: First, an attacker has

a corruption strategy, which describes at what points in the computation parties

can change their status from honest to corrupted and vice versa. The second

aspect concerns allowed adversarial behaviour, i. e., what actions the corrupted
parties can perform. We explain possible corruption strategies and possible

definitions for allowed adversarial behaviour in the remainder of this Section.

Corruption Strategy

An attacker’s corruption strategy defines at which point in time parties can

switch from being honest to being corrupted or from being corrupted to being

honest [76]:

1. Static corruption: The set of corrupted parties is determined and fixed

before the computation begins. Parties cannot change from honest to

corrupted or from corrupted to honest during the computation.

2. Adaptive corruption: The adversary can corrupt parties during the compu-

tation at will. It can adapt its decision which parties to corrupt based on

the internal states of the already-corrupted parties, hence the name. Once

corrupted, parties do not become honest again.

3. Proactive security: Parties can become corrupted throughout the compu-

tation, but may also switch from being corrupted to being honest. This

models situations where corruption by an adversary can be reversed (e. g.,

by resetting an infiltrated machine to a clean state).

11

fundamentals

Allowed Adversarial Behaviour

The allowed adversarial behaviour defines what actions corrupted parties can

take. We distinguish between the following types of attacker [76]:

1. Semi-honest attackers (sometimes also called honest-but-curious or passive)
are the weakest form of attacker. They may read the internal state of

corrupted parties as well as messages sent and received by them. They

attempt to use this information to gainmore information than contained in

the computation’s result, however, they cannot modify or forge messages.

2. Malicious (or active) adversaries can access the corrupted parties’ internal

states and instruct these parties to deviate arbitrarily from the protocol.

Besides sending wrong or invalid information, corrupted parties might

also forge or withhold messages.

3. Covert adversaries have the same capabilities as malicious adversaries.

However, they do not wish to be caught acting maliciously, and hence do

not perform actions that lead to their detection with some application-

dependent probability [11].

2.2.4 a more general smpc protocol

In this Section, we introduce a protocol for SMPC using Shamir’s secret sharing

as a basic building block [43, p. 43-44], which is known as the BGW protocol [17].

We denote the number of parties participating in the computation with 𝑛. This

protocol requires the function that the parties would like to compute to be

represented as an arithmetic circuit over the finite fieldℤ𝑝 (𝑝 > 𝑛) comprised of

addition, multiplication-by-public-constant and multiplication gates. We assume

that this circuit is known to all parties. Further, we assume the existence of

pairwise secure channels, such that all parties can communicate securely with

each other. The protocol then consists of the following phases:

1. Input sharing: The parties share their input with the other parties. Each
party splits its input into 𝑛 secret shares and distributes them among

the other parties. For this, a (𝑛, 𝑡 + 1) Shamir’s secret sharing scheme

where 𝑡 =
⌊
𝑛−1
2

⌋
is used. Party 𝑃𝑖 ’s secret input value 𝐷𝑖 is split into

the shares 𝐷𝑖 ,1 , . . . , 𝐷𝑖 ,𝑛 . It distributes these shares such that party 𝑃𝑗 is

provided with𝐷𝑖 , 𝑗 over a secure channel. After this step, the parties are in

possession of 𝑛 secret shares, each of which stems from a different party

and thus corresponds to a different input wire in the circuit.

2. Circuit evaluation: The parties evaluate the circuit gate by gate and ex-

change messages as needed. We now describe the steps necessary to evalu-

ate the different types of gate [43, 17, 76].

Addition Gate The polynomials 𝑎(𝑥) and 𝑏(𝑥) represent secret-shared
values on the addition gate’s input wires. Party 𝑃𝑖 possesses values 𝑎(𝑖)
and 𝑏(𝑖). The output wire of an addition gate should hold 𝑎(0) + 𝑏(0), i. e.,
each party should have valid secret share of 𝑎(0) + 𝑏(0) after evaluation
of the gate. For that, 𝑃𝑖 can simply compute 𝑎(𝑖) + 𝑏(𝑖), thereby acquiring

12

2.2 secure multiparty computation

value 𝑐(𝑖) of polynomial 𝑐(𝑥) = 𝑎(𝑥) + 𝑏(𝑥). Since 𝑐(0) = 𝑎(0) + 𝑏(0)
and deg(𝑐) = 𝑡 , the value 𝑐(𝑖) is a valid secret share of 𝑎(0) + 𝑏(0).

Multiplication-by-public-constant Gate Given a public constant ℎ

in plaintext and a secret share of the gate’s input value (the corresponding

polynomial 𝑎(𝑥) evaluated at point 𝑖, i. e., 𝑎(𝑖)), party 𝑃𝑖 must compute

ℎ · 𝑎(𝑖). We define 𝑐(𝑥) = ℎ · 𝑎(𝑥) and, since deg(𝑐) = 𝑡 , immediately see

that 𝑐(𝑖) = ℎ · 𝑎(𝑖) is a valid secret share of 𝑐(0) = ℎ · 𝑎(0).

Multiplication Gate Consider a multiplication gate. The gate’s input

wires hold values encoded by the polynomials 𝑎(𝑥) and 𝑏(𝑥). Each party
possesses one share of these two values, i. e., 𝑃𝑖 has knowledge of 𝑎(𝑖) and
𝑏(𝑖). The goal is to have the output wire hold the value 𝑎(0) · 𝑏(0) encoded
by a polynomial with degree 𝑡, with party 𝑃𝑖 holding one share. As for

the previous gates, parties can multiply their shares locally, computing

𝑐(𝑥) = 𝑎(𝑥) · 𝑏(𝑥). While 𝑐(0) = 𝑎(0) · 𝑏(0), we observe that deg(𝑐) = 2𝑡 ,
which means that 𝑐 is not suitable for use in a (𝑛, 𝑡 + 1) secret sharing
scheme. In order to obtain a polynomial representation of 𝑐(0) that has
degree 𝑡 , the parties perform a degree-reduction step. For this, each party

𝑃𝑖 selects a uniformly distributed random value 𝑟𝑖 . It splits this value into

shares in two different ways: First, using a (𝑛, 𝑡+1) secret sharing scheme

(using a polynomial𝑅𝑖
𝑡(𝑥) of degree 𝑡) and second using a (𝑛, 2𝑡+1) secret

sharing scheme (using a degree 2𝑡 polynomial 𝑅𝑖
2𝑡(𝑥)). These shares are

then distributed among the parties such that party 𝑃𝑖 ends up with shares

𝑅
𝑗

𝑡(𝑖) and 𝑅
𝑗

2𝑡(𝑖) ∀𝑗 ∈ {1, . . . , 𝑛}. Each party then computes 𝑅𝑡(𝑖) =∑𝑛
𝑗=1 𝑅

𝑗

𝑡(𝑖) and𝑅2𝑡(𝑖) =
∑𝑛

𝑗=1 𝑅
𝑗

2𝑡(𝑖). The polynomials𝑅𝑡(𝑥) and𝑅2𝑡(𝑥)
are thus two independent sharings of 𝑟 =

∑𝑛
𝑗=1 𝑟𝑖 (i. e., 𝑅𝑡(0) = 𝑅2𝑡(0) =

𝑟) and party 𝑃𝑖 holds one share of each of these sharings. Further, it is

evident that no party knows the value of 𝑟.

Each party 𝑃𝑖 locally computes a share of the polynomial 𝑑(𝑥) = 𝑐(𝑥) −
𝑅2𝑡(𝑥) by evaluating 𝑑(𝑖) = 𝑐(𝑖)−𝑅2𝑡(𝑖). Note that deg(𝑐) = deg(𝑅2𝑡) =
deg(𝑑) = 2𝑡. The parties broadcast their shares of 𝑑(𝑥) and reconstruct
𝑑(0) = 𝑐(0) − 𝑟. Party 𝑃𝑖 can then calculate 𝑐′(𝑖) = 𝑅𝑡(𝑖) + 𝑑(0). The
polynomial 𝑐′(𝑥) with deg(𝑐′) = 𝑡 then encodes the desired result of the

multiplication since 𝑐′(0) = 𝑅𝑡(0) + 𝑑(0) = 𝑟 + 𝑐(0) − 𝑑 = 𝑎(0) · 𝑏(0).
Thus, each party holds a secret share of the input wires’ product encoded

in a degree-𝑡 polynomial. Further, the protocol the parties execute to

acquire 𝑐′(𝑖) does not give them any information about the values 𝑐(0),
𝑐′(0), 𝑎(0) or 𝑏(0) [76, 37].

3. Output reconstruction: After evaluating the circuit, each party holds one
share of the value on each output wire. In order to reconstruct these values,

the parties exchange their shares. An output value can be reconstructed

through interpolation (see Subsection 2.1.1) after 𝑘 of its shares have been

obtained.

This protocol is secure in a scenario in which every pair of parties can

communicate privately, the attackers are semi-honest and a majority of the

parties (i. e., > 𝑛
2) is not corrupted. This is because when sharing the inputs

13

fundamentals

in Step 1, the parties use a (𝑛, 𝑡 + 1) secret sharing scheme where 𝑡 =
⌊
𝑛−1
2

⌋
,

implying that a semi-honest coalition of

⌈
𝑛
2

⌉
is sufficient to reconstruct the inputs

of all parties. Further, it is secure against a coalition of < 𝑛
3 active attackers, if a

verifiable secret sharing scheme (e. g., the one proposed by [31]) is used instead of

Shamir’s secret sharing [10].

We note that protocols tolerating up to
𝑛
2 malicious parties are known [15,

92], however, these protocols assume the existence of a broadcast channel the

parties have access to.

2.2.5 performance improvements through preprocessing

In Subsection 2.2.4, we introduce a protocol for general-purpose SMPC in an

honest-majority scenario with semi-honest attackers. However, the protocol

requires communication at various points in time throughout execution. First,

input sharing and output reconstruction require communication, which cannot

be avoided in SMPC protocols based on secret sharing techniques. Additionally,

each evaluation of a multiplication gate requires two rounds of communication:

one for cooperatively establishing 𝑅𝑡(𝑥) and 𝑅2𝑡(𝑥), and one for reconstructing
𝑑(0). This poses serious limitations on the performance and scalability of the

protocol.

For this reason, we give an example of a modification of the above protocol

that reduces interactivity through preprocessing. This modification was first

proposed by Beaver [14] and has found use in several real-world protocols used

for SMPC. It makes use of Beaver triplets, which are tuples of three numbers

(𝑎, 𝑏, 𝑐) ∈ ℤ3
𝑝 such that 𝑎𝑏 = 𝑐.

The protocol introduces a preprocessing phase, which is executed before

the above protocol commences. We denote the number of multiplication gates

in the arithmetic circuit to be evaluated with 𝑁 . During preprocessing, the

parties generate 𝑁 Beaver triplets (𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘) ∀𝑘 ∈ {1, . . . , 𝑁} such that after
preprocessing, each party 𝑃𝑖 holds one share of the numbers in the triplets.

In order to generate one Beaver triplet (𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘), each party 𝑃𝑖 chooses two

random numbers 𝑎𝑘,𝑖 and 𝑏𝑘,𝑖 , shares them using a (𝑛, 𝑡 + 1) secret sharing
scheme (producing shares 𝑎𝑘,𝑖, 𝑗 and 𝑏𝑘,𝑖, 𝑗 ∀𝑗 ∈ {1, . . . , 𝑛}) and distributes these
shares among the parties. After that, 𝑃𝑖 is in possession of 𝑎𝑘,ℓ ,𝑖 and 𝑏𝑘,ℓ ,𝑖 ∀ℓ ∈
{1, . . . , 𝑛} and computes its shares of 𝑎𝑘 and 𝑏𝑘 as

∑𝑛
ℓ=1 𝑎𝑘,ℓ ,𝑖 and

∑𝑛
ℓ=1 𝑏𝑘,ℓ ,𝑖 .

Afterwards, the parties perform the protocol for evaluating a multiplication gate

as described above with shared inputs 𝑎𝑘 and 𝑏𝑘 in order to acquire a share of

𝑐𝑘 . This process is repeated until 𝑁 Beaver triples have been generated [14].

These triplets can now be used to reduce interactivity in the circuit evalu-

ation phase. For this, the evaluation protocol of multiplication gates is modified,

which we describe in the following
1
. A Beaver triplet (𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘) is used to aid

evaluation of multiplication gate 𝑔𝑘 .

Suppose 𝑃𝑖 wants to evaluate 𝑔𝑘 with secret shared values 𝑠1(0) and 𝑠2(0)
(encoded through polynomials 𝑠1(𝑥) and 𝑠2(𝑥) such that 𝑃𝑖 knows 𝑠1(𝑖) and
𝑠2(𝑖)) on 𝑔𝑘 ’s input wires with the help of Beaver triplet (𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘), which is

1 This description is based on Beaver [14] and partly on Jiff’s source code, which implements this

protocol faithfully. See: https://github.com/multiparty/jiff/blob/8ea565d3d0be
cde8f71243fb9daea6ef0ba9bb7e/lib/client/protocols/numbers/arithmetic.j
s#L192-L218

14

https://github.com/multiparty/jiff/blob/8ea565d3d0becde8f71243fb9daea6ef0ba9bb7e/lib/client/protocols/numbers/arithmetic.js#L192-L218
https://github.com/multiparty/jiff/blob/8ea565d3d0becde8f71243fb9daea6ef0ba9bb7e/lib/client/protocols/numbers/arithmetic.js#L192-L218
https://github.com/multiparty/jiff/blob/8ea565d3d0becde8f71243fb9daea6ef0ba9bb7e/lib/client/protocols/numbers/arithmetic.js#L192-L218

2.3 trusted execution environments

shared as polynomials (𝐴𝑘(𝑥), 𝐵𝑘(𝑥), 𝐶𝑘(𝑥)). It is in possession of the values

𝑠1(𝑖), 𝑠2(𝑖), 𝐴𝑘(𝑖), 𝐵𝑘(𝑖) and 𝐶𝑘(𝑖). First, 𝑃𝑖 calculates 𝑑(𝑖) = 𝑠1(𝑖) −𝐴𝑘(𝑖) and
𝑒(𝑖) = 𝑠2(𝑖) − 𝐵𝑘(𝑖). The parties then cooperate in order to reconstruct 𝑑(0)
and 𝑒(0) (which does not reveal any information about 𝑠1(𝑥) and 𝑠2(𝑥)). Now,
each party 𝑃𝑖 can compute a share of the input wires’ product 𝑠3(𝑖) through
𝑠3(𝑖) = 𝑑(0) · 𝑒(0) + 𝐵𝑘(𝑖) · 𝑑(0) + 𝐴𝑘(𝑖) · 𝑒(0) + 𝐶𝑘(𝑖). This result is correct,
because the polynomial 𝑠3(𝑥) = 𝑑(0) · 𝑒(0)+𝐵𝑘(𝑥) ·𝑑(0)+𝐴𝑘(𝑥) · 𝑒(0)+𝐶𝑘(𝑥)
has degree 𝑡 and

𝑠3(0) = 𝑑(0) · 𝑒(0) + 𝐵𝑘(0) · 𝑑(0) + 𝐴𝑘(0) · 𝑒(0) + 𝐶𝑘(0)

=

(
𝑠1(0) − 𝐴𝑘(0)

)
·
(
𝑠2(0) − 𝐵𝑘(0)

)
+ 𝐵𝑘(0) ·

(
𝑠1(0) − 𝐴𝑘(0)

)
+ 𝐴𝑘(0) ·

(
𝑠2(0) − 𝐵𝑘(0)

)
+ 𝐶𝑘(0)

= 𝑠1(0) · 𝑠2(0) − 𝑠1(0) · 𝐵𝑘(0) − 𝑠2(0) · 𝐴𝑘(0) + 𝐴𝑘(0) · 𝐵𝑘(0)
+ 𝑠1(0) · 𝐵𝑘(0) − 𝐴𝑘(0) · 𝐵𝑘(0) + 𝑠2(0) · 𝐴𝑘(0) − 𝐴𝑘(0) · 𝐵𝑘(0)
+ 𝐴𝑘(0) · 𝐵𝑘(0)

= 𝑠1(0) · 𝑠2(0)

Further, no information about 𝑠3(0) is revealed, as the numbers comprising

the utilised Beaver triplet are uniformly distributed and unknown to the parties.

We note that evaluating a multiplication gate in this manner requires only

one round of communication (when reconstructing 𝑑(0) and 𝑒(0)). This per-
formance improvement was bought at the cost of an additional preprocessing

phase. However, preprocessing is independent of the parties’ inputs to the com-

putation, which means that it can be performed in advance before the inputs are

available. In some use cases, this turns out to be a desirable property.

2.3 trusted execution environments

It is common practice of businesses to perform computations not locally, but in

the cloud. In particular, computations requiring powerful hardware or services

requiring rapid scalability are often outsourced to specialised cloud providers,

e. g., Amazon AWS, Microsoft Azure or Google Cloud. However, in the current

data economy, code and especially data (particularly personal data) are highly

valuable resources. Handing over these vital resources to cloud providers, which

are often direct competitors, and possibly exposing these resources to other ten-

ants sharing the same physical computing hardware conflicts business interests

and data protection laws.

TEEs aim to alleviate these issues by providing secure containers/enclaves,
which provide secure environments in which applications can be executed. These

containers run on the cloud provider’s machines, but are strictly isolated from

all other applications running on the same hardware, in particular privileged

software such as the operating system. This isolation is enforced by hardware.

TEEs typically provide an attestationmechanism, through which the software

running inside a container can prove to the user that it is indeed protected by

trusted hardware and has not been tampered with.

A schematic overview of TEEs is shown in Figure 2.1. A user (which we also

refer to as a data owner) owns private data; service providers own hardware

15

fundamentals

Foreign Computer

Trusted Hardware

manufactures

attests

sets up computation µ

returns results µ

manages

distrusts

trusts
Other Software

Container

Hardware

Manufacturer

Data Owner

Service Provider

Figure 2.1: General architecture for trusted computing (based on Costan and Deva-

das [34]). A service provider manages computing infrastructure that is build on trusted

hardware manufactured by a hardware manufacturer. A secure container hosted on

trusted hardware attests to a data owner, i. e., proves its identity and that it is actually

protected by trusted hardware. Through attestation, the data owner and the container

additionally establish a secure communication channel. The data owner can then setup

a computation by loading private data into the container. The container then executes

the desired computation and securely returns the result to the data owner.

manufactured by a manufacturer. Data owners can trigger the creation of a

secure container on the infrastructure owner’s hardware. After creation, they

can perform an attestation to convince themselves that the container is indeed

protected by trusted hardware and to establish a secure communication channel

to the container. They can then upload their data, at which point computation

inside the container commences. After the computation has finished, the results

are transmitted to the user. Note that at no point in time, the service provider

(or untrusted software running on the same hardware) has access to data, code

or (intermediate) results of the computation running inside the container.

Examples of TEEs are

• Intel SGX [79, 55]

• ARM TrustZone [3]

• AMD Secure Encrypted Virtualization (SEV) [4]

• Execute-only Memory (XOM) [75]

• Trusted Platform Modules (TPM) [112]

• Sanctum [35]

• Keystone [73]

16

2.3 trusted execution environments

It is worth mentioning that ensuring the confidentiality of code and data in a

cloud setting is not the only use case for TEEs. In general, TEEs protect software

from other software and from the owner of hardware it is executed on. It thus

finds (not uncontroversial [109, 7]) uses e. g., in digital rights management [124],

authenticated bootmechanisms [45], hardening of sensitive applications [78] (e. g.,

programmes for banking), ensuring the integrity of mobile- and IoT-devices [64]

and private contact discovery in messenger services [77].

In this work,we leverage the security guarantees of Intel SGX to implement a

framework for secure statistical analysis of sensitive data. The following Section

serves as an introduction into SGX, its mechanisms and the security it provides.

2.3.1 intel sgx

Intel Software Guard Extensions (Intel SGX) [79, 5, 55] is an implementation of a

TEE available on a number of recent Intel CPUs. It was announced in 2013 and

became available in 2015 with the introduction of Intel’s SkyLake architecture [6].
It has been part of recent incarnations of the Intel architecture, however, support

on client platforms was dropped in 2022. Going forward, SGX will only be

available on Intel Xeon processors [96].

SGX is comprised of hardware elements and a set of CPU instructions. These

instructions allow processes to instantiate enclaves. Enclaves are isolated execu-

tion environments in the sense that their code and memory contents cannot be

read or manipulated by hard- or software except by the enclave code itself and

the Intel CPU hosting the enclave. Further, it provides the possibility to verify

the integrity and identity of enclaves via attestation [113].

SGX Data Structures

Intel SGX introduces various data structures necessary for the secure operation

of enclaves. In this Section, we describe the most essential data structures using

the information provided in Intel’s Software Developer Manual [54] as well as
information from McKeen et al. [79] and Costan and Devadas [34].

Processor Reserved Memory The Processor-Reserved Memory (PRM) is a

contiguous part of the system’s RAM that is used for the Enclave Page Cache.
It has hardware protections in place that prevent non-enclave read or write

accesses, i. e., from system software, OS, hypervisor, system management mode

code, and peripherals.

Enclave Page Cache The Enclave Page Cache (EPC) is used for storing the

contents and management information of enclaves. It is divided into 4 kB pages

and located in the PRM. The OS or hypervisor is responsible for assigning pages

to enclaves using specialised SGX instructions. As these entities are not trusted in

SGX’ attacker model, the assignment decisions of the OS/hypervisor are checked

by the (trusted) processor and only performed if deemed security compliant.

Because the EPC is located in the PRM, its pages can only be accessed by code

running in enclaves. However, there is one exception to this rule: The SGX

instructions used for the allocation of pages to enclaves also initialise these pages,

possibly with data from non-PRM pages.

17

fundamentals

SGX implements a mechanism for page swapping, which can be used to

securely evict EPC pages to untrusted RAM. For this, it provides the instruction

EWB, which evicts a page to non-PRM. Because non-PRM is assumed to be

malicious, EWB encrypts the page’s contents using symmetric encryption and a

nonce. This guarantees confidentiality, integrity and freshness. Once stored in

non-PRM, the OS can treat evicted pages like regular memory pages and evict

them further, e. g., to disk. The reverse operation, namely loading back evicted

pages into the EPC, is implemented by the instructions ELDU and ELDB.
On older Intel processor architectures (i. e., architectures preceding IceLake),

the EPC is limited to a size of 128 to 256MB2
. If an enclaved application alloc-

ates more memory, some of the enclave’s pages are evicted into RAM, negatively

impacting performance. More recent Intel processors do not have this limitation.

Enclave Page Cache Map The Enclave Page Cache Map (EPCM) stores the

allocation status of pages, their type and an identifier of the enclave it has been

allocated to. It is solely used by the processor to track the state of EPC pages

and to validate the allocation decisions of the OS/hypervisor. The processor

further uses it to enforce the isolation guarantees of Intel SGX, i. e., to ensure

that enclaves only access memory that has been assigned to them. As a given page

can only be assigned to one single enclave at a time, communication between

enclaves using shared EPC memory is impossible.

SGX Enclave Control Structure Each enclave is associated with a SGX
Enclave Control Structure (SECS), which is used to store metadata (e. g., enclave

size, debug status etc.). SECSs are stored in the EPC, they are however managed

by the processor and not accessible by enclaves themselves. This is necessary

because the SECS stores the enclave’s measurement, which is used for attestation.

A Day in the Life of an SGX Enclave

In this Section, we describe the typical life-cycle (see Figure 2.2) of SGX en-

claves [34].

Creation and Initialisation The creation of an enclave can be triggered by

system software with the ECREATE instruction. This instruction allocates one
EPC page, which is consequently used as the new enclave’s SECS. This SECS is

initialised with the contents of a non-EPC page owned by the application that

issues the ECREATE instruction. It is required to contain valid values for all SECS
fields. If this is not the case, the instruction results in a page fault or in a general

protection fault. ECREATE additionally sets the new enclave’s INIT attribute

(which is stored in its SECS) to false. This marks the enclave as uninitialised and

not yet ready to be scheduled for execution.

While the enclave is in this state, system software can perform the initialisa-

tion of the enclave. This process consists of allocating EPC pages to the enclave

and initialising themusing data fromnon-EPCpages. This is done using the EADD
instruction, which accomplishes both of these tasks. Additionally, the system

2 See: https://gramine.readthedocs.io/en/latest/performance.html#choice-o
f-sgx-machine

18

https://gramine.readthedocs.io/en/latest/performance.html#choice-of-sgx-machine
https://gramine.readthedocs.io/en/latest/performance.html#choice-of-sgx-machine

2.3 trusted execution environments

Nonexistingstart Uninitialised

Initialised,

not running

Initialised,

running

ECREATE

EADD
EEXTEND

EREMOVE
EINIT

EENTER
ERESUME

EEXIT
AEX

EGETKEY
EREPORT

Figure 2.2: The life-cycle of an SGX enclave based on Costan and Devadas [34]. Some

instructions available in SGX have been left out for brevity.

software uses the EEXTEND instruction for updating the enclave’s measurement

after new pages have been added.

After the initial state of the enclave has been established, the system software

can perform a procedure to mark the enclave as initialised and thus ready to

launch. For this, it must obtain an EINIT token, which can only be issued by

a special Launch Enclave (LE) provided by Intel. In order to be able to launch

enclaves, onemust thus first start the LE,which, due to its special nature, does not

require an EINIT token. The LE inspects the newly created enclave and provides

the system software with a MAC-protected EINIT token if it approves its launch.
The criteria by which the LE decides whether or not to approve an enclave are

not known. The implications of the existence of a LE and its role in the launch

process are discussed in detail by Costan and Devadas [34, §5.9]. After having

obtained an EINIT token, the system software can execute the instruction EINIT,
which checks the validity of the EINIT token and marks the enclave ready for

launch by setting the INIT attribute in the corresponding SECS to true. This
causes subsequent invocations of EADD to fail, but allows (unprivileged) system
software start to the execution of the enclave’s code.

19

fundamentals

Entry and Exit After an enclave has been initialised, an unprivileged
3
process

(which we refer to as host process) can execute its code. For this, it invokes the

SGX instruction EENTER. EENTER saves the process’ context, sets the mode of

the processor to enclave mode and jumps to a specified location in the enclave’s

code. Being in enclave mode allows the process to access the enclave’s EPC,

which is not possible in non-enclave mode.

The enclave code can use the instruction EEXIT to return to non-enclave

code. This instruction sets the processor’s mode to non-enclave, restores the

host process’ previously saved context and hands over control by jumping to an

address in the host process’ (non-EPC) memory space.

EENTER and EEXIT are used for synchronous entry and exit of enclave code,
i. e., entry and exit during normal execution. However, as the execution of an

enclave can be interrupted in unforeseen ways through hardware exceptions, an

additional mechanism for keeping the enclave’s contents safe throughout such

events is needed. Intel SGX provides such a mechanism with a routine called

Asynchronous Exit (AEX) and an instruction ERESUME. If a hardware exception
occurs during the execution of enclave code, the processor performs an AEX.

An AEX saves the enclave’s execution context to the EPC and restores the host

process’ context previously saved by EENTER. It then invokes the system soft-

ware’s exception handler. After handling the hardware exception, the handler

can execute ERESUME in order to resume execution of the enclave’s code.

Teardown When an enclave is no longer needed, it can be torn down. For this,

system software can execute the EREMOVE instruction on the EPC pages allocated

to the enclave, freeing them. After all EPC pages belonging to the enclave have

been freed, EREMOVE can be called on the EPC page holding the enclave’s SECS,

after which its removal is complete.

Other Features Intel SGX provides a range of additional features and spe-

cialised instructions. As the rest of this work makes no use of these features, we

omit a detailed description, but only mention the existence and use of enclave
sealing and secret migration, which are worth knowing.

Enclave sealing provides a mechanism to persist an enclave’s memory con-

tents in a secure way [5]. For this, SGX uses symmetric encryption with a key

based on the enclave’s identity. This ensures that only subsequent instantiations

of the exact same enclave can decrypt the persisted state.

Secret migration provides a mechanism for migrating an enclave’s secrets

to a different enclave running a more recent version of the same software. A

theoretical attack, in which a enclave could claim to be a newer version of an

existing enclave in order to gain access to its secrets is mitigated by only allowing

secret migration between enclaves of the same author.

SGX Attestation

Attestation is a process by which an enclave can prove that it runs on trusted

hardware, in a trusted container, with a trusted initial state. In SGX, an enclave’s

measurement is an essential part of attestation. The measurement of an enclave

is computed during its creation using the EEXTEND instruction and can, for our

3 In this context, privilegedmainly refers to the operating system.

20

2.3 trusted execution environments

intents and purposes, be viewed as a secure hash over the initial contents of

the enclave’s EPC pages. SGX provides two mechanisms for attestation. Local
attestation can be used by an enclave to prove its identity to another enclave

running on the same system. Remote attestation is used to prove the fact that

the enclave is running on a system supporting a specified version of SGX using

trusted hardware with specified initial memory contents to a remote entity.

Local Attestation In order to prove its identity (i. e., its measurement as well

as the platform it is running on) to a target enclave, an enclave can execute the
EREPORT instruction. This instruction produces a report, which binds a 64-byte
enclave-supplied message to the enclave’s identity using a symmetric key that

is only known to the target enclave and to the processor. The target enclave

can verify this report using this symmetric key, which it can acquire using the

EGETKEY instruction.

Remote Attestation Remote attestation relies on an enclave provided by

Intel, the so-called quoting enclave and on an attestation key. The attestation key is
provided by Intel during provisioning of the processor. It is encrypted using the

provisioning seal key, which is based on a secret value stored in secure hardware

(namely e-fuses), and can only be acquired by Intel-signed enclaves.

The process of remote attestation starts with a remote entity (challenger)
requesting an enclave to authenticate itself. This challenge contains a nonce.
The attesting enclave first attests locally to the quoting enclave, using the nonce

provided with the challenge as the enclave-supplied message. As an Intel-signed

enclave, the quoting enclave can acquire the provisioning seal key using EGETKEY,
which it uses to decrypt the attestation key. The attestation key is then used

to sign the local attestation report, which is forwarded to the challenger. The

challenger can verify the validity of the report using an attestation verification

service.

Security Guarantees

Intel SGX aims to provide confidentiality, integrity and freshness guarantees

to the contents of enclaves. In SGX’s view, all system software (except locally

attested enclaves) and hardware (except the Intel CPU) are malicious, in partic-

ular the OS/hypervisor and the enclave’s host process. For this reason, system

software cannot read or write an enclave’s EPC pages (except through EADD
during enclave creation), which is enforced by hardware (however, enclave code

can read and write non-EPC pages). Further, context switches that transition

away from enclave code (e. g., as caused by a hardware exception) always lead to

the erasure of the values the enclave stored in the processor’s registers, making

the leakage of secrets through registers impossible. Freshness follows from the

remote attestation mechanism described above, where the attesting enclave must

include a challenger-provided nonce in its attestation report.

However, while SGX defends against attempts to directly read or write

enclave memory, it does not defend against a range of indirect attacks. For

example, SGX does not defend against attacks utilising the side-channels of

power consumption, performance statistics (e. g., cache misses), branch statistics

or page tables [53]. Defence against such attacks is left to enclave authors, who

21

fundamentals

can harden their application using known countermeasures, e. g., by relying on

side-channel resistant cryptographic libraries
4
[25].

Since its introduction, the security of Intel SGX has often been challenged.

A large body of work is dedicated to circumventing SGX’ security guarantees

and/or proposing protections against such circumventions. For the sake of brev-

ity, we only point out that practical attacks on SGX have been (and continue to

be) found and refer to Zheng et al. [126] for a short overview and to Fei et al. [44]

for a detailed survey of such attacks.

4 E. g., intel-sgx-ssl is a cryptographic library provided by Intel intended for usage in SGX

applications: https://github.com/intel/intel-sgx-ssl

22

https://github.com/intel/intel-sgx-ssl

3ENABL ING TECHNOLOG IE S

In Chapter 6, we implement a software prototype combining SMPC and Intel

SGX. In this Section, we discuss software libraries and frameworks that promise

to allow easy integration of these technologies.

3.1 enabling secure multiparty computation

In this Section, we introduce three software libraries for performing SMPC. We

chose these three libraries because they

• Do not limit usage through proprietary licensing schemes

• Permit computation between more than two parties

• Implement protocols based on Shamir’s secret sharing (the reason for this

requirement is discussed in Chapter 5)

• Are focused on easy usability.

Other currently available libraries for SMPC are either restricted by pro-

prietary licenses [20, 72], do not support computation between at least three

parties [39, 95, 123, 98], are not based on Shamir’s secret sharing [121, 119, 120,

12, 108, 52], serve specific niches like machine learning [83, 71], or are retired [99].

Our choice of libraries we consider is based on work by Hastings et al. [50] and

a list of software libraries for SMPC found on GitHub
1
.

3.1.1 jiff

Jiff (JavaScript Implementation of Federated Functionality) [84, 1, 2] is a software
library providing primitives for general-purpose SMPC. As its name suggests,

it is written in and for JavaScript. Jiff was developed in order to be used in

(possibly pre-existing) web applications. As such, it has unique properties which

distinguish it from other SMPC libraries. The first property follows directly

from the fact that Jiff is written in JavaScript: Jiff-based applications are very

portable. They can be run on desktop computers andmobile devices via amodern

browser, but also on headless systems using JavaScript runtime environments

such as node.js2 . Second, Jiff aims to support dynamic SMPC, in which parties

can join and leave during computations, and fault-tolerant SMPC in the sense

that it can recover from crashes and network partitions. Further, Jiff is largely

protocol-agnostic and can (in principle) be used with a wide range of different

SMPC protocols. However, the current version of Jiff only implements one

SMPC protocol. This protocol, which is based on BGW [17], supports primitives

for performing various common computations on secret shares, e. g., addition,

subtraction, multiplication, division, comparisons, bitwise operations etc.

1 https://github.com/rdragos/awesome-mpc#software
2 https://nodejs.org/

23

https://github.com/rdragos/awesome-mpc#software
https://nodejs.org/

enabling technologies

Logistics Server

T

Party 1

�

Party 2

�
Party 3

�

Figure 3.1: The general architecture of Jiff based on Albab [1]. The parties send messages

to each other through the logistics server. As communication is end-to-end encrypted,

the server learns nothing.

The general architecture of Jiff is shown in Figure 3.1. It consists of a number

of parties and a logistics server, thus implementing a client-server architecture.

The logistics server facilitates message transport between the parties and handles

other organisational tasks such as announcing joining or leaving parties. Com-

pared to the peer-to-peer architecture seen in most other software for SMPC,

this has the very practical advantage that only the server needs a public, static

network address (as opposed to every computing party). As all communication is

encrypted, the server cannot learn anything about the computation itself. SMPC

consists of a preprocessing phase and a computation phase. During prepro-

cessing, the parties generate correlated randomness, e. g., Beaver triplets, which

can be used to accelerate the subsequent computation phase (see Subsection 2.2.5).

Parties can join or leave the SMPC while it is running. If they leave due to a

network failure or crash, the server buffers messages sent to them and ensures

that the computation can continue after they rejoin.

Further, the server has an interesting functionality for accelerating SMPC:

it can act as a crypto provider, providing the parties with correlated randomness,

e. g., Beaver triplets. In this case, the preprocessing phase is omitted and the

parties can gather correlated randomness from the server as needed. Of course,

using this functionality is a trade-off in security, which we discuss below.

The default SMPC protocol Jiff ships with enables an asymmetric security

model [84]. The preprocessing phase uses a protocol based on BGW [17] (see

Subsection 2.2.4) to generate Beaver triplets and is secure against a semi-honest

minority. The protocol used in the computation phase, however, is secure against

a semi-honest majority, i. e., up to 𝑛 − 1 corrupted parties cannot collude to

reconstruct the secret input of the remaining party. This distinction is import-

ant, as Jiff allows an architecture in which the set of parties participating in

preprocessing differs from the set of parties participating in the computation.

If preprocessing is not used and Beaver triples are provided by the server, the

security model changes. In this case, the computation remains secure against a

majority of semi-honest non-server parties, but is insecure against a coalition of

24

3.2 enabling intel sgx

the server and one or more non-server parties.

Jiff has support for extensions, which can introduce new functionality with

minimal code changes. It ships with extensions providing support for arbitrarily

large integers (BigNumbers), fixed-point numbers, negative numbers and altern-

ative communication methods (e. g., HTTP long polling instead of the socket.IO3

library, which is the default).

Unfortunately, Jiff’s documentation is incomplete. While the most frequently

used interfaces are well-documented, documentation on internals, the provided

protocol for SMPC and less-used functionality is often either outdated or non-

existent.

3.1.2 mp-spdz

MP-SPDZ [61] is a framework implementing 30 different protocols for SMPC,

which cover all common security models. Its aim is to provide a single interface

to these protocols, enabling rapid comparison and benchmarking.

The framework consists of a compiler, which converts a high-level Domain-
Specific Language (DSL) based on Python that implements business logic to

bytecode, and a virtual machine that executes this bytecode.

In terms of efficiency, the framework performs relatively well. The reason

for this is it applies various optimisations such as performing preprocessing on

demand; it further enables programmers to implement message batching in a

non-verbose way.

3.1.3 mpyc

MPyC4
[101, 100] is a software framework for the Python programming language

that implements SMPC based on Shamir’s secret sharing. It is secure against a

semi-honest minority of corrupted parties. It has a strong focus on usability, i. e.,

it allows users to write relatively normal looking Python code which can either

be executed locally or in a distributed fashion as an SMPC. Therefore, code using

MPyC is usually more concise than code using other frameworks for SMPC,

however this usability comes at a cost. First, MPyC typically performs compu-

tations slower than other frameworks [61]. Second, MPyC does not provide

flexibility, neither in the choice of protocol used to perform the SMPC, nor in

the system architecture. For example, implementing dynamic SMPC in which

parties can join or leave the group of participants during execution is, technically

speaking, possible, but requires circumvention of several abstractions MPyC

provides and thus leads to unidiomatic code
5
.

3.2 enabling intel sgx

Intel SGX requires a specific programming model, in which applications are

divided into non-enclave code and enclave code. In order to profit from SGX’

3 https://socket.io/
4 https://www.win.tue.nl/~berry/mpyc/
5 See: https://github.com/lschoe/mpyc/issues/42

25

https://socket.io/
https://www.win.tue.nl/~berry/mpyc/
https://github.com/lschoe/mpyc/issues/42

enabling technologies

security guarantees, enclave code must fulfil certain properties. For example,

it cannot trust the underlying OS, in particular data made available via the OS

through system calls. For this reason, it is a widespread belief that porting an

existing application for usage with SGX involves large code changes, which

inhibits its adoption [113].

One approach for tackling this issue is the usage of a Library OS, which
acts as a wrapper around the API provided by the system OS. It can thereby

perform additional checks, e. g., verifying data provided by the OS, essentially

shielding the application from the hostOS. In 2015, it was shown that unmodified

applications can be run in SGX with the help of a Library OS [13]. Using this

approach, the entire application’s code is run inside an enclave. Entering and

leaving the enclave (e. g., for serving system calls) is fully handled by the Library

OS. While this tremendously increases the accessibility of SGX, using a Library

OS comes with drawbacks. For example, as the entire application’s code is run

in an enclave, all its system calls lead to an expensive enclave exit and reentry. In

applications that are hand-written for SGX, only well-measured portions of the

programme’s code are executed in an enclave, minimising the number of enclave

entries and exits. Further, using Library OSes means including much code into

the enclave, increasing the Trusted Computing Base (TCB). This does not only
lead to a larger attack surface, but also increased enclave creation time [113].

Still, Library OSes have the potential to allow quick deployment of SGX-

enabled applications without any need for refactoring. One incarnation of this

approach is Gramine-SGX, which is discussed in the following Section.

3.2.1 gramine-sgx

Gramine6 [114, 113] (formerly called Graphene) is a library OS, which aims

to isolate applications from other software running on a given system by re-

implementing the Linux system call API. It provides platform adaptation layers

for running applications in an isolated environment either with or without the

help of Intel SGX enclaves. The latter mode, which we refer to as Gramine-SGX,

allows users to run unmodified binaries in enclaves.

Gramine requires that applications come with a signed manifest file. This
manifest file describes the resources the application is allowed to use, e. g., files

that can be accessed or networking capabilities. In particular, each file that the

application is allowed to use is associated with a secure hash of its contents.

During runtime, Gramine enforces these rules using its implementation of the

Linux system call API. For example, if an application requests to open a file using

the open system call, Gramine first verifies that the target file’s hash equals the

hash specified in the signed manifest. This ensures that the OS cannot inject

malicious data into the enclave.

Gramine-SGX defends against an attacker model that is close to SGX’: it

distrusts everything except the CPU and the own enclave’s contents. In particular,

the OS, hypervisor, other (possibly privileged) applications and hardware outside

the CPU package are viewed as potentially malicious.

Tsai, Porter and Vij [113] measure the overhead introduced by using Gramine

or Gramine-SGX for a variety of applications. Compared to a programme run-

6 https://gramineproject.io/

26

https://gramineproject.io/

3.2 enabling intel sgx

ning without techniques for isolation, Gramine (without SGX) introduces only

a marginal overhead. Using Gramine-SGX leads to more overhead, increasing

runtime by an order of magnitude. However, much of the overhead introduced

by Gramine-SGX is due to enclave creation time, which takes several seconds.

Without enclave creation time, the runtime overhead of Gramine-SGX is roughly

a factor of 2-5.

3.2.2 scriptshield

ScriptShield by Wang et al. [118] is a framework that enables the execution of un-

modified scripts in SGX enclaves. It accomplishes this by running an interpreter

for the scripting language in question in an enclave. In order to enable system

calls, they statically link the interpreter against a modified version of libc, which,

much like a Library OS, verifies return values of system calls provided by the OS.

ScriptShield differs from Gramine-SGX in a number of ways. First, it relies

on a remote party, which is expected to partake in attestation. After the enclave

running ScriptShield has proven its authenticity, the remote party is expected

to send a script to be executed through an encrypted channel. As far as we are

aware, executing a script that is stored in untrusted storage is not supported.

Second, ScriptShield has a smaller TCB than Gramine-SGX. This leads to smaller

enclave sizes and faster startup times. Third, the authors’ benchmarks suggest

that ScriptShield has less runtime overhead than Gramine-SGX. However, these

benchmarks are not directly comparable to the benchmarks performed by the

authors of Gramine-SGX [113], as the former assess performance by execut-

ing standard benchmarking scripts, whereas the latter assess performance by

measuring the runtime of real-world applications.

Currently, ScriptShield supports executing scripts written in either JavaS-

cript, Lua or Squirrel. In principle, ScriptShield can be extended to support

additional language interpreters, however, the authors note that this process,

which involves statically linking the interpreter in question against a modified

musl-libc
7
, requires "tedious engineering efforts" [118].

ScriptShield does not seem to be actively maintained. As of March 2023, the

latest commit in the project’s GitHub repository
8
is four years old. Further, we

were unable to compile ScriptShield
9
.

7 https://musl.libc.org/
8 https://github.com/OSUSecLab/scriptshield
9 See: https://github.com/OSUSecLab/scriptshield/issues/1

27

https://musl.libc.org/
https://github.com/OSUSecLab/scriptshield
https://github.com/OSUSecLab/scriptshield/issues/1

4RELATED WORK

In this Section,we discuss relatedwork. Section 4.1 discusses attempts to improve

the efficiency of SMPC by using TEEs as a TTP. Section 4.2 presents previous

work focused on strengthening privacy guarantees in empirical studies or, more

generally, in statistical data analysis.

4.1 improving smpc performance through tee

In today’s world, network speed lags behind processor speed. Moore’s law [49]

describes the exponential growth in processing capabilities observedover the past

decades. Nielsen [88] notes that a similar (albeit slower) growth can be observed

for network bandwidth. However, latency in networks does not enjoy similar

improvements. Part of the reason for this is the existence of propagation delay,

which is the time needed by a signal to travel from its source to its destination.

Unfortunately, as the speed of light is finite, new technological advances cannot

decrease propagation delaymeaningfully, placing a hard limit on network latency.

For this reason, the performance of communication intensive applications is

often bounded by the limitations of the network, not the processor [14].

SMPC is such an application, thus communication overhead significantly

influences the performance of SMPC. For this reason, research has aimed to

reduce communication requirements in SPMC settings using various crypto-

graphic techniques [14, 16, 60]. Another interesting approach is to use TEEs

to implement TTPs (as in the real/ideal simulation paradigm introduced in

Subsection 2.2.2) [105, 91, 102, 48, 65, 9, 30]. These TTPs receive the parties’

inputs, securely compute the results and send them to the parties. The parties

can convince themselves that the computation is performed securely through

attestation.

Portela et al. [91] implement SMPC using a TTP realised through Intel SGX.

They report that their version of SMPC outperforms software-only SMPC by a

factor of up to 300. These findings are consistent with Ankele and Simpson [8],

who measure the computation times of simple operations using software-only

SMPC and TEE-assisted SMPC and conclude that the latter outperforms the

former by several orders of magnitude.

Gupta et al. [48] point out that using TEEs for implementing TTPs does not

automatically make computations secure. First, trusting a TEE means trusting

its designer, its manufacturer and its supply chain. The assumption that the

TEE in use behaves as expected cannot be verified, because, to the best of Gupta

et al.’s and our knowledge, techniques allowing customers to verify hardware are

currently not widely available. Second, common TEEs (e. g., Intel SGX) provide

no security guarantees against side-channel attacks. If software running in a

container is not specifically written to resist such attacks, data may be leaked.

Third, security depends on the assumption that the security guarantees claimed

by the TEE are actually provided. However, vulnerabilities have been discovered

in leading TEEs, calling into question the confidentiality and integrity actually

guaranteed by these technologies [30].

29

related work

Further, we note that some TEEs (one of which is Intel SGX
1
) only offer

security in the presence of a computationally bounded attacker, whereas many

protocols for SMPC that do not use TEEs provide unconditional security [76].

4.2 enhancing privacy in empirical studies

As discussed in Chapter 1, empirical studies are under threat of attacks that

target the anonymity and privacy of their participants. Related work has aimed

to alleviate this issue by hiding individual responses from researchers. Access

is only granted to aggregations of the collected responses, which is assumed to

make conclusions about individual respondents impossible.

In Subsection 4.2.1, we describe PeQES [81], which is a platform for conduct-

ing empirical studies. It hides the data of study participants in a TEE, making

them inaccessible for researchers. In Subsection 4.2.2, we discuss approaches for

privacy-respecting data analysis based on SMPC. None of the approaches we

discuss are specifically designed as platforms for conducting empirical studies,

but can in principle be modified to act as such.

4.2.1 privacy through tees

Meißner et al. [81] propose aworkflow forprivacy-enhanced studies that relies on

TEEs. In this workflow, researchers are required to specify a study design using a

structured specification language, which includes the study procedure, the survey

design and a script for statistical data analysis. Once this specification is approved

and signed by an ethics board, researchers can upload it to a platform for privacy-
enhanced quantitative empirical studies (PeQES). This platform conducts empirical

data collection by allowing participants of the study to submit survey responses,

e. g., through a web form generated according to the researchers’ specification.

Once data collection is completed (e. g., if a sufficient number of participants has

submitted responses), PeQES runs the specified script for statistical data analysis

and returns its results to the researchers.

The key ideas are that

• the ethics boards is trusted to only approve of scripts for statistical data

analysis that do not have an unacceptable privacy impact for participants,

i. e., results are aggregated in such a way that no personally identifiable

information about participants is revealed

• PeQES only accepts study designs that have been signed by an ethics board

• PeQES protects the confidentiality of survey answers at all times using a

suitable TEE technology.

In this workflow, researchers only have access to the results of the script for

statistical data analyses. Interactive analysis or access to the responses themselves

are no longer permitted, increasing privacy guarantees for participants. Meißner

et al. provide a reference implementation of PeQES that uses Intel SGX as a TEE.

1 This follows directly from the fact that Intel SGX uses computationally secure symmetric encryp-

tion (AES) for encrypting evicted EPC pages [34].

30

4.2 enhancing privacy in empirical studies

They show that the overhead introduced by SGX is acceptable even for studies

with a large number of participants
2
.

4.2.2 privacy through smpc

Lapets et al. [68, 69, 70, 66, 18] implement a platform to aggregate survey data in a

privacy-preserving way, which consists of a service provider and a data analyser.

Survey participants mask their responses using a randomly generated mask.

Additionally, they encrypt the mask using the data analyser’s public key. Both the

masked data and the encrypted mask are uploaded to the service provider, who

computes an aggregation function on the masked data. Finally, the aggregated

masked data as well as the encrypted masks are provided to the data analyser,

who decrypts the masks with their private key, and uses them to obtain the

unmasked aggregated data. In this system, privacy is guaranteed as long as the

service provider and the data analyser remain semi-honest, i. e., do not collude.

Lapets et al. give no comments on the performance of their platform, but their

protocol suggests no major sources of overhead. However, their platform is not

able to perform arbitrary computations. In the described form, the only possible

aggregation is a sum over all responses, which is only useful in very specific

use-cases. The platform has been used in a real-world scenario, in particular for

analysing gender and ethnicity wage gaps in the Greater Boston Area. This ana-

lysis, which is performed on a yearly basis, later switched to using a platform [2]

based on Jiff (see Subsection 3.1.1).

Subsequent work by partly the same authors proposes a conceptual frame-

work for role-based SMPC,which is aimed at guiding the development of SMPC-

based platforms as described above [67].

In general, we see that SMPC has been used in real-world deployments [41,

59, 21]. However,many of these deployments utilise specialised protocols that are

unable to perform general purpose computation, but only specific functions. Such

precisely tailored protocols often offer better performance than their general-

purpose counterparts, but hinder extensibility and reusability. For this reason,

we continue this Section with examples of related work developing platforms

for data analysis which are not bound to one specific real-world use-case.

Jarrous and Pinkas [58] propose and implementCanon-MPC, which is similar

to Jiff in that it supports participation in a computation via a web browser and

enables asynchronous computation, in which parties do not need to be available

throughout the computation. They use a non-interactive protocol for SMPC

based on zero-knowledge proofs, which, as they claim, has excellent performance.

However, Canon-MPC lacks auditability. Its source code is not accessible, it is

delivered as a compiled binary and it is executed through Google’s proprietary

NativeClient. Further, as NativeClient has been deprecated in June 2022
3
, we

assume that Canon-MPC is no longer able to run in contemporary web browsers.

2 The script for statistical data analysis in their sample study performs an independent two-sample

t-test. In the case of 10 000 responses, SGX introduces an overhead of factor≈ 15, which is≈ 78 s
in absolute terms. Response submission times is independent of the number of participants or the

script for data analysis and is not notably increased by usage of SGX.

3 See: https://blog.chromium.org/2020/08/changes-to-chrome-app-support-tim
eline.html

31

https://blog.chromium.org/2020/08/changes-to-chrome-app-support-timeline.html
https://blog.chromium.org/2020/08/changes-to-chrome-app-support-timeline.html

related work

Chida et al. [29] implement a statistical analysis environment, where compu-

tations are performed in a distributed fashion using SMPC. This environment

provides several pre-defined algorithms for statistical analysis, e. g., a version

of the t-test and 𝜒2
test. Their implementation provides good performance

and usability through an interface that allows specifying queries using the R
language

4
.

Bogdanov et al. [23] design and implement a similar statistical analysis en-

vironment (Rmind). They provide a larger number of pre-defined algorithms.

Further, they support restricting the analyses that can be performed on data

via a study plan, which is a similar approach to protecting privacy as found in

PeQES’ [81] signed scripts for statistical analysis. They implement Rmind using

the ShareMind [20] framework, however they do not publish the source code.

STAR [103] enables statistical tests on private data using a combination

of SMPC, Homomorphic Encryption (HE) and append-only ledgers. In its envi-

sioned workflow, data owners encrypt their data using HE. Researchers can

then perform statistical tests on the encrypted data, yielding an encrypted result.

Decryption of this result is only possible through an SMPC between a set of ex-

ternal computing servers. Further, STAR persists all operations that researchers

perform in an append-only log file, which is assumed to be tamper-proof. STAR’s

primary purpose it to prevent questionable research practices by guaranteeing

that such practices can be discovered by inspection of the log file. However, in

this process, it also ensures the confidentiality of the utilised data. One limitation

of STAR is that data must be provided by a single data owner, who performs

encryption thereof. This makes it unsuitable for performing privacy-enhanced

surveys without fully trusting the data owner, because responses are inherently

accessible by it.

4 https://www.r-project.org/

32

https://www.r-project.org/

Part II

Contribution

33

5APPROACH

In this Section, we introduce our approach for providing strong security guaran-

tees for empirical studies. Section 5.1 discusses the design of PeQES [81], which

we introduced in Subsection 4.2.1, in detail. In Section 5.2, we introduce a plat-

form similar to PeQES, but based on SMPC instead of TEEs. In Section 5.3, we

introduce a combination of this platform and PeQES, which provides strong

security guarantees regarding privacy in empirical studies.

5.1 using sgx for hardening the privacy of empirical studies

In this Section, we describe relevant parts of the design of PeQES as proposed by

Meißner et al. [81]. PeQES relies on a central platform, which utilises a TEE (e. g.,

Intel SGX) for safeguarding participants’ survey responses. In the following, we

describe the protocol which the platform, researcher, ethics board and survey

participants execute in order to securely conduct empirical studies.

First, we define the level of trust each entity enjoys. The platform, which we

call 𝑇𝑃 and possesses a key pair (𝑇𝑃𝑠𝑘 , 𝑇𝑃𝑝𝑘), is assumed to be honest. This

assumption follows from the fact that critical portions of the 𝑇𝑃 are protected

by the TEE, which is assumed to be fully secure (i. e., no one except the platform

itself has access to the data stored in protected memory). 𝑇𝑃 is hosted by a

platform provider𝐻 , which acts as a covert adversary, i. e., tries to extract survey

responses without being caught. Researcher 𝑅 conducting the study is assumed

to be fully malicious. The ethics board 𝐵 (which possesses a key pair (𝐵𝑠𝑘 , 𝐵𝑝𝑘))
is honest, but not capable or willing to collect and process survey responses itself.

Study participants 𝑃1 , . . . , 𝑃𝑚 are assumed to be willing to participate in a given

study, either motivated by a desire to contribute to science or because of other

incentives, e. g., monetary rewards. They are not modelled as malicious, because

we deem mitigation of attacks they are able to engage in to be out of scope for

this work
1
. In order to conduct a study, 𝑅 provides a study specification 𝑆 that

includes a survey and a script for statistical analysis. The survey can be in an

arbitrary format understood by the participants, e. g., a HTML form. The script

is assumed to be provided in a format both human- and machine readable, e. g.,

as a Python script.

The procedure for securely conducting a study is visualised in Figure 5.1.

(1) Once 𝑅 has finished developing 𝑆, they upload it to 𝑇𝑃.

(2) 𝐵 performs a remote attestation with 𝑇𝑃, verifying that the platform is

secured by trusted hardware and establishing a shared symmetric key.

(3) 𝑇𝑃 sends the study to 𝐵 for approval.

1 Study participants can perform Sybil attacks, which can be prevented by an authentication mech-

anism. Further, they can submit unwanted or invalid survey responses in order to acquire rewards,

however, mitigation of such an attack is the responsibility of researcher, who can perform data

cleaning as part of statistical analysis [81].

35

approach

(4) If 𝐵 approves of the study, it signs it using its private key 𝐵𝑠𝑘 . It sends

Sig𝐵𝑠𝑘
(𝑆) to 𝑇𝑃.

(5) Participants download 𝑆 and Sig𝐵𝑠𝑘
(𝑆) from 𝑇𝑃 in order to participate.

They are able to verify the signature using 𝐵𝑝𝑘 , which assures them that

𝐵 has approved the study and attested 𝑇𝑃, ensuring that it is running on

trusted hardware.

(6) After taking the survey, the participants send their encrypted responses

to 𝑇𝑃.

(7) After enough responses have been recorded, 𝑇𝑃 runs the script for statist-

ical data analysis contained in 𝑆 and sends the results to 𝑅.

PeQES preserves the privacy of participants, because it guarantees that solely

𝑇𝑃 has access to the participants’ raw responses. Researcher 𝑅 is only provided

with the results of the script for statistical data analysis, which, as ensured per 𝐵’s

approval, do not contain personally identifiable information. Platform provider

𝐻 ,who controls the hardware𝑇𝑃 is executed on, cannot access the raw responses

because they are protected by a TEE.

Notably, the participants can be convinced that their data is protected by

secure hardware without performing a remote attestation themselves. As the

ethics board is trusted by the participants, its signature is sufficient to convince

them that the integrity of the platform has been verified beforehand. Meißner

et al. [81] describe this trust relationship with the term transitive trust.
The privacy guarantees of PeQES, however, only hold as long as the TEE

used can provide adequate protection. If, e. g., Intel SGX is used, the platform re-

mains vulnerable to a range of side-channel attacks, potentially exposing private

information. For this reason, this work proposes an improved solution for ensur-

ing the privacy of participants. Section 5.2 proposes a platform similar to PeQES,

which relies on SMPC instead of TEEs for preventing unauthorised access to

survey responses. Section 5.3 combines both platforms in order to ensure privacy

in the presence of a large variety of attackers.

5.2 using smpc for hardening the privacy of empirical studies

In the previous Section, we discuss PeQES, a system for conducting empirical

studies that protects the privacy of participants. In this Section, we discuss a

similar approach that, instead of a TEE, relies on SMPC for providing confidenti-

ality. Essentially, it is based on the idea that participants split their responses into

secret shares and distribute them among a set of servers. These servers perform

statistical analysis on the responses via secret sharing based SMPC, however,

they are unable to make conclusions about their contents.

The platform is no longer realised as a single entity, but as a distributed

system consisting of 𝑛 computation parties, which are denoted as 𝐶1 , . . . , 𝐶𝑛

and have key pairs (𝐶1,𝑠𝑘 , 𝐶1,𝑝𝑘), . . . , (𝐶𝑛,𝑠𝑘 , 𝐶𝑛,𝑝𝑘). These parties are hosted
by platform providers 𝐻1 , . . . , 𝐻𝑛 . We assume that there is no set of more than

𝑘 =
⌊
𝑛−1
2

⌋
colluding platform providers, i. e., we assume a honest majority. We

assume that the computation parties can communicate with each other in a

secure way. Further, a semi-honest logistics server 𝐿 facilitates communication

36

5.2 using smpc for hardening the privacy of empirical studies

Researcher 𝑅

�
Ethics Board 𝐵

�

Platform 𝑇𝑃
�

µ

Participants

g

� Study (1)

|� Results (7)

"� Participation (5) �µ Data (6)

µ Attestation (2)

� Study (3)

�� Study Approval (4)

Figure 5.1: Procedure using PeQES for securely conducting empirical studies [81].

between 𝐵, the computation parties and the participants. 𝑅, 𝐵 and 𝑃1 , . . . , 𝑃𝑚

are identical to their counterparts described in Section 5.1, 𝑆 has the difference

that its script for statistical analysis must now support execution as an SMPC

through a protocol based on Shamir’s secret sharing (e. g., BGW [17]). The script

is expected not to leak sensitive results, i. e., not to perform reconstruction of

values that contain personally identifiable information and of the result. 𝐵’s

approval of 𝑆 is assumed to ensure this. Further, 𝑅 now possesses a key pair

(𝑅𝑝𝑘 , 𝑅𝑠𝑘). We assume that all public keys are known to each entity. In practice,

this can be accomplished by distribution through 𝐵.

(1) In order to start the process, 𝑅 sends 𝑆 to 𝐵.

(2) If𝐵 approves of𝑆, it sends𝑆 to each computation party and𝐿. Additionally,

it provides them with Sig𝐵𝑠𝑘
(𝑆, 𝐶1,𝑝𝑘 , . . . , 𝐶𝑛,𝑝𝑘), a signature over 𝑆 and

the computation parties’ public keys.

(3) Participants download 𝑆 and Sig𝐵𝑠𝑘
(𝑆, 𝐶1,𝑝𝑘 , . . . , 𝐶𝑛,𝑝𝑘) from 𝐿. They

can verify the signature in order to convince themselves that 𝐵 has ap-

proved of the study and the computation parties.

(4) After taking the survey, participant 𝑃𝑖 splits their response 𝑆𝑖 into secret

shares 𝑆𝑖 , 𝑗 using a suitable secret sharing scheme (e. g., (𝑛, 𝑘 + 1) Shamir’s

secret sharing if BGW is used). Each share 𝑆𝑖 , 𝑗 is encrypted using 𝐶 𝑗 ,𝑝𝑘

The encrypted shares are sent to 𝐿.

(5) 𝐿 relays each encrypted secret share to the respective computation party,

which can decrypt it using its secret key.

(6) When the computation parties have received the response shares of all

participants, they perform an SMPC in order to evaluate the script for

statistical data analysis.

37

approach

Researcher 𝑅

�
Ethics Board 𝐵

�

Logistics Server

T

𝐶3

�

𝐶2

�
𝐶1

�

Participants

g

� Study (1)

�� Attested Study (2)

�� (2) �� Attested Study (2)

�� (2)

Figure 5.2: Publishing an empirical study on a platform based on SMPC (corresponding

to steps (1) and (2)).

(7) After the script for statistical data analysis has been executed, each com-

putation party is left with one secret share of the result. These shares are

encrypted using 𝑅𝑝𝑘 and sent to 𝐿.

(8) 𝐿 relays the encrypted result shares to 𝑅, who can decrypt them and

reconstruct the result of the script for statistical data analysis.

This process (with 𝑛 = 3) is visualised in Figure 5.2 and Figure 5.3. Figure 5.2
shows the setup of the study, i. e., steps (1) and (2). Figure 5.3 shows the steps for

participation in a study, execution of the script for statistical data analysis and

transfer of the result shares to the researcher.

This protocol protects the participants’ responses from illicit access if the

SMPC is secure, i. e., a sufficient amount of computation parties are not cor-

rupted. Further, as the computation parties are modelled as semi-honest, the

security properties of correctness, independence of inputs, guaranteed output

delivery and fairness are preserved. However, if a large enough subset of the plat-

form providers {𝐻1 , . . . , 𝐻𝑛} colludes and reads the secret-shared responses
from memory, they can be reconstructed, compromising privacy. If BGW (see

Subsection 2.2.4) is employed, a subset of
𝑛
2 semi-honest computation parties

suffices for this.

As noted above, we consider attacks mounted by participants to be out of

scope for this work. For completeness, we mention a possible attempt to attack

the protocol’s independence of inputs. Consider the case of a coalition comprised

of ≥ 𝑛
2 semi-honest computation parties and of 𝑞 < 𝑚 malicious participants

(leaving 𝑚 − 𝑞 honest participants). After the 𝑚 − 𝑞 honest participants have

submitted their responses, the semi-honest computation parties can reconstruct

38

5.3 main contribution: combining tees and smpc

Researcher 𝑅

�
Ethics Board 𝐵

�

Logistics Server

T

𝐶3

�

𝐶2

�
𝐶1

�

Participants

g
"� Participation (3)

�µ Data Shares (4)

�µ Data Shares (5)

|µ Result Shares (7)

3 SMPC (6)

|µ Result Shares (8)

Figure 5.3: Steps (3) - (8) for securely conducting an empirical study through a platform

based on SMPC.

them by combining the secret shares they have been provided with. The 𝑞

malicious participants can now adjust their responses in order to influence the

result of the script for statistical analysis (which they know through the semi-

honest computation parties). This attack differs from a coalition of solely 𝑞

malicious participants in that the attackers can now fine-tune the responses they

submit as to evade detection by potential data cleaning steps in the script for

statistical analysis.

We further note that the logistics server cannot compromise privacy, as it

only sees encrypted data. However, it enhances the usability of the platform

insofar as it allows participants to communicate with one instance only instead

of the 𝑛 computation parties.

5.3 main contribution: combining tees and smpc

Section 5.2 introduces an approach for realising a platform providing confiden-

tiality for empirical studies using SMPC. In this Section, we describe this work’s

main contribution. We combine PeQES [81] and its SMPC based sibling in order

to achieve much stronger privacy guarantees than either system can provide on

its own.

The entities relevant to this system are the same as in Section 5.2. Researcher

𝑅 with key pair (𝑅𝑝𝑘 , 𝑅𝑠𝑘) is again assumed to be fully malicious. They wish to

conduct a study 𝑆, which consists of a survey and a script for statistical analysis

through an SMPC. The ethics board 𝐵 (with key pair (𝐵𝑠𝑘 , 𝐵𝑝𝑘)) and the study

39

approach

participants 𝑃1 , . . . , 𝑃𝑚 are modelled as described in Section 5.2. Further, there

is a set of computation parties 𝐶1 , . . . , 𝐶𝑛 with key pairs (𝐶1,𝑠𝑘 , 𝐶1,𝑝𝑘), . . . ,
(𝐶𝑛,𝑠𝑘 , 𝐶𝑛,𝑝𝑘), which are hosted by platform providers 𝐻1 , . . . 𝐻𝑛 . The com-

putation parties can communicate securely with each other. Further, a logistics

server 𝐿 facilitates communication between the platform, the participants and

the researcher.

The computation parties are, as described above, responsible for collecting

the participants’ answers, running a script for statistical analysis on these answers

and returning its result to the researcher via 𝐿. However, they now protect the

participants’ answers and the execution of the script for statistical analysis by

means of a suitable TEE (e. g., Intel SGX), i. e., they are implemented in such

a way that shares of participants’ data are never exposed to the platform pro-

viders. Additionally, the TEE’s attestation capabilities are used to ensure correct

execution of the script for statistical analysis.

Studies are conducted exactly as described in Section 5.2, however, step (2)

is modified. Now, 𝐵 performs a remote attestation with each of the computation

parties 𝐶𝑖 in order to convince itself that it is in fact running on secure hardware

and has not been tampered with. Further, 𝐶𝑖 is required to prove knowledge of

𝐶𝑖 ,𝑠𝑘 , e. g., by signing a nonce provided by 𝐵. It is only after each computation

party has successfully attested itself that 𝐵 proceeds with signing the study and

the computation parties’ public keys and uploading it to the parties. By verifying

Sig𝐵𝑠𝑘
(𝑆, 𝐶1,𝑝𝑘 , . . . , 𝐶𝑛,𝑝𝑘), the computation parties convince themselves that

the study has been approved by 𝐵 and that all computation parties are running

on trusted hardware.

When participating in a study, the participants are still required to verify

Sig𝐵𝑠𝑘
(𝑆, 𝐶1,𝑝𝑘 , . . . , 𝐶𝑛,𝑝𝑘). However, verification now assures them that

• 𝐵 has approved the study and checked the fact that the computation parties

are protected by trusted hardware

• 𝐶 𝑗 is in possession of 𝐶 𝑗 ,𝑠𝑘 , which ensures that no man-in-the-middle

attack (e. g., by 𝐻𝑗) is taking place.

In the following Section, we discuss the privacy guarantees provided by this

platform and compare them to the privacy guarantees of PeQES and the platform

described in Section 5.2.

5.3.1 consequences for privacy guarantees

In this Section,we compare the guarantees for confidentiality of survey responses

of PeQES, the platform introduced in Section 5.2 and the combination of both

described in Section 5.3. We consider correctness, independence of inputs, guar-

anteed output delivery and fairness as defined in Subsection 2.2.2 as out of scope

and only analyse the privacy guarantees of the platforms. Without loss of gen-

erality we assume that BGW [17] using Shamir’s secret sharing as proposed by

Shamir [104] is used for SMPC. This protocol is secure against a semi-honest

minority. Further, we assume that Intel SGX is employed as the utilised TEE.

The platform introduced in Section 5.2 only utilises SMPC for protecting

the confidentiality of participants’ responses. Every computation party is in

possession of exactly one secret share of each participant’s response. As BGW

40

5.3 main contribution: combining tees and smpc

utilises a (𝑛, 𝑘 + 1) Shamir’s secret sharing scheme with 𝑘 =
⌊
𝑛−1
2

⌋
, a set

of 𝑘 + 1 distinct secret shares is required for reconstructing a response. As

discussed in Subsection 2.2.4, BGW provides security (i. e., privacy, correctness,

independence of inputs, guaranteed output delivery and fairness) in the presence

of < 𝑛
2 semi-honest attackers. Individual platform providers 𝐻𝑖 hosting 𝐶𝑖

cannot reconstruct responses on their own, even if they gain access to the data

stored in 𝐶𝑖 ’s memory, as it contains only one share of each response. The same

is true for a coalition comprised of a semi-honest minority of platform providers,

because they cannot acquire
𝑛
2 secret shares of individual responses which are

needed to reconstruct them. A coalition of ≥ 𝑛
2 semi-honest platform providers

(which can read the computation parties’ memory and communication, but do

not alter their behaviour or perform man-in-the-middle attacks), however, can

reassemble the answers provided by participants, thus compromising privacy.

We further note that compute parties can easily be made malicious by the

respective platform provider, e. g., through modification of the application code.

However, this only affects correctness of the computation the script for statistical

data analysis performs and guaranteed output delivery. Honest participants

cannot be tricked into answering surveys not approved by the ethics board, as

they can verify its signature via its public key (which we assume to be known in

advance).

PeQES relies on the guarantees of Intel SGX for security. These guarantees

encompass integrity and confidentiality for code and data protected by an enclave

even in the presence of a privileged attacker. However, confidentiality only holds

if the application processing the confidential data is not vulnerable to side-

channel attacks, which SGX explicitly does not protect against. In PeQES, the

script for statistical data analysis is provided in a DSL based on JavaScript and

interpreted by the QuickJS
2
JavaScript engine. Even though interpreted scripts

are less susceptible to side-channels than software executed as native code [118],

the risk of such attacks can ultimately only be lowered by employing techniques

to specifically counter this threat (e. g., by applying best-practices for secure

coding). Further, SGX security guarantees may be circumvented if the script

for statistical data analysis itself contains maliciously crafted code. The ethics

board is trusted to reject studies containing such scripts. In order to make this

verification practical, Meißner et al. [81] propose to limit the DSL in such a way

that malicious intent is harder to conceal. For example, it is conceivable that the

DSL only permits calling a set of whitelisted statistical functions, easing code

review and making it difficult to hide malicious functionality. This, in turn, can

also serve as a protection against side-channel attacks, because best-practices for

side-channel resistant coding can be checked relatively effectively in an audit of

a limited amount of code that is only allowed to call pre-audited functions. If,

however, SGX is broken in the sense that the security guarantees Intel claims it

has no longer hold, PeQES is no longer secure as well, even if it does not contain

vulnerabilities itself. There have been attacks that demonstrated read-access

to data stored in secure memory without the use of side-channels or software

vulnerabilities in enclaves [26, 115]. While Intel has provided updates to the

microcode of SGX-enabled processors to mitigate these specific attacks, the

emergence of novel, similarly critical vulnerabilities in the future cannot be

ruled out.

2 https://bellard.org/quickjs/

41

https://bellard.org/quickjs/

approach

Our approach uses both SMPC (more specifically, BGW) and Intel SGX

to guarantee confidentiality of survey responses. Compromising its security

requires controlling a potent coalition of platform providers, which are all able

and willing to read data from protected memory either by using side-channel

attacks or by circumventing the TEE’s security mechanisms.

An overview of different attack scenarios and privacy preservation of the

different platforms under these scenarios is given in Table 5.1. As described above,

a platform using only Intel SGX (e. g., PeQES) to protect privacy fails if either

the enclaved application is vulnerable to side-channel attacks or if SGX itself is

attackable. A platform using SMPC (BGW) to protect privacy is vulnerable in the

presence of ≥ 𝑛
2 colluding attackers. Our proposed platform using both of these

techniques protects privacy in every scenario with either an honest majority

of computation parties or in which attackers cannot read protected memory,

effectively providing an additional line of defence compared to both PeQES and

the platform proposed in Section 5.2. In the event that Intel SGX turns out to be

susceptible to novel attacks or that side-channels are found in either the platform

application or the script for statistical analysis, the fact that user data are stored

in a decentralised way protects them from unauthorised access. In this case,

an adversary would need to be in control of enough computation parties. As

the parties are hosted by independent platform providers, this is unlikely. In

reality, platform providers can be different research institutions. Such institutions

are concerned for their reputation and are often in a competitive relationship,

incentivising them to monitor each other for scientific misconduct and lowering

chances of malicious collusion.

In the reverse case, i. e., in the event that Intel SGX in combination with a

securely coded platform application protects survey responses reliably, even a

coalition of all computation parties (e. g., through collusion of the respective

institutions or infection by malware) cannot access private data.

The additional layer of security present in the proposed platform strengthens

privacy guarantees, however, it also introduces performance overhead. In order

to investigate its impact, we implement a prototype of the platform, measure

the duration of various computations and compare them to platforms with less

strong privacy guarantees. The implementation is described in Chapter 6; the

evaluation and its results are found in Chapter 7.

42

5.3 main contribution: combining tees and smpc

SGX

vulnerable

Side-chan.

exploitable

Attackers Only

SGX

Only

SMPC

SMPC

+ TEE

No

No

< 𝑛/2
!

! !

≥ 𝑛/2 % !

Yes

< 𝑛/2
%

! !

≥ 𝑛/2 % %

Yes

No

< 𝑛/2

%

! !

≥ 𝑛/2 % %

Yes

< 𝑛/2 ! !

≥ 𝑛/2 % %

Table 5.1: Different attack scenarios a platform for conducting empirical studies can face.

The left-hand side specifies the capabilities and, if applicable, the number of colluding

computation parties. The right-hand side lists whether a platform making use of either

only SGX, only SMPC or both to protect private data can guarantee privacy (!) or

not (%).

43

6IMPLEMENTAT ION

In order to assess the performance of the system proposed in Section 5.3, we

implemented a prototype application that realises a combination of SMPC and

TEEs as above. Further, we implemented prototypes realising platforms secured

only by SGX (resembling PeQES [81]), only by SMPC (resembling the platform

proposed in Section 5.2) and neither technology as a baseline. Code artefacts have

been made available online
1
. In this Section, we introduce the software libraries

and frameworks the prototypes are built upon. In Chapter 7, we describe the

experiments used to evaluate the performance of the prototypes, the results of

which we present in Chapter 6.

6.1 requirements

The prototype of the platform we propose is a proof-of-concept meant to com-

pare computational efficiency of the proposed systems. It is specifically not de-
signed to provide the full functionality of the system proposed in Section 5.3,

but only serves to assess the feasibility of our approach in terms of performance.

We identify several requirements that the prototype is expected to fulfil.

First, the prototype is expected to implement a distributed system that is able

to perform an SMPC. Shares of the inputs, intermediary results and results must

be protected by trusted hardware. We chose Intel SGX as the TEE the platform

uses because it is widely available on current hardware. Second, in order to

enable participants to split their responses into secret shares, the protocol used

for SMPCmust be based on secret sharing. Further, itmust support computations

between more than two parties and be secure against a semi-honest minority of

attackers. We explicitly exclude functionality that does not affect computational

performance, i. e., the ethics board, the researcher and verification of signatures.

In order to compare the performance of our approach to platforms using

only SGX, only SMPC or neither of those to protect user data, we also implement

prototypes realising them.

6.2 choice of technology

For implementing the prototypes described above, we make use of existing

software frameworks and libraries. In order to be able to perform SMPCs, we

utilise a suitable library implementing such primitives. To make our prototypes

compatible with Intel SGX, we are faced with the choice of either implementing

a native SGX application or using technologies that enable running unmodified

applications in SGX. In this Section, we describe these choices.

1 https://gitlab-vs.informatik.uni-ulm.de/theses/2022-ma-dispan/-/tree/v
1.1/code

45

https://gitlab-vs.informatik.uni-ulm.de/theses/2022-ma-dispan/-/tree/v1.1/code
https://gitlab-vs.informatik.uni-ulm.de/theses/2022-ma-dispan/-/tree/v1.1/code

implementation

1 inputs = mpc.input(in_value)
2 product = secint (1)
3

4 for x in inputs:
5 product = product * x
6 # alternativly:
7 # product = mpc.prod(inputs)
8

9 result = await mpc.output(product)
10 print(result)

Listing 6.1: Computing the product of the input values in MPyC [101].

6.2.1 technology for smpc

In Section 3.1, we introduce three different software libraries that implement

SMPC, namely Jiff, MP-SPDZ and MPyC. After careful comparison of these

three libraries we conclude that Jiff is suited best for implementing the proof-of-

concept application. In the following, we discuss the reasons for this decision.

MPyC is focused on being user-friendly and working out of the box without
requiring much configuration. Notably, it makes use of operator overloading,

which leads to SMPC code that is nearly identical to regular Python code (as

shown in Listing 6.1
2
). The system we propose requires researchers that conduct

empirical studies to write scripts for statistical analysis. Using a library like

MPyC, which would allow writing SMPC scripts without requiring expertise in

SMPCmay boost acceptance of our platform. However,MPyC’s user-friendliness

comes at the price of limited flexibility. For example, it does not have built-in

support for parties that only provide inputs but do not stay online during the

computation itself (which is required for modelling study participants). While

achieving such a feature is technically possible with MPyC, it requires actively

programming against the library’s abstractions, discouraging their usage. For
this reason, we do not use MPyC for implementing the prototype.

MP-SPDZ is the opposite of MPyC in the sense that it provides flexibility at

the cost of usability. It supports a large number of protocols for SMPC, some

of which are based on Shamir’s secret sharing. Further, it permits asynchron-

ous input parties, which leave the computation right after sharing their input.

However, it has a rather steep learning curve. As shown in Listing 6.2, it uses a

DSL that introduces novel syntax to Python (e. g., for looping under SMPC) and

requires using specialised functions for common operations (e. g., print_ln
instead of print).

Jiff has native support for asynchronous input parties and implements an

SMPC protocol secure against a semi-honest minority of attackers. It is written

in JavaScript and SMPCs are expressed as regular method calls as shown in

Listing 6.3
3
, which contains code using Jiff to compute the product of the parties’

inputs. It thus does not require learning new syntax for expressing computations

2 The example code is inspired by Hastings et al. [50] (See: https://github.com/MPC-SoK
/frameworks/blob/master/mpyc/source/mult3.py) and Schoenmakers [100] (See:

https://mpyc.readthedocs.io/en/latest/demos.html#oneliners-py).
3 The example shown is a modified version of code by Hastings et al. [50] (See: https://github

.com/MPC-SoK/frameworks/blob/master/jiff/source/mult3/mpc.js).

46

https://github.com/MPC-SoK/frameworks/blob/master/mpyc/source/mult3.py
https://github.com/MPC-SoK/frameworks/blob/master/mpyc/source/mult3.py
https://mpyc.readthedocs.io/en/latest/demos.html#oneliners-py
https://github.com/MPC-SoK/frameworks/blob/master/jiff/source/mult3/mpc.js
https://github.com/MPC-SoK/frameworks/blob/master/jiff/source/mult3/mpc.js

6.2 choice of technology

1 prod = Array(1, sint)
2 prod [0] = sint (1)
3

4 @for_range(number_clients)
5 def loop_body(i):
6 a = sint.get_input_from(i)
7 prod [0] = prod [0] * a
8

9 print_ln(’%s’, prod [0]. reveal ());

Listing 6.2: Computing the product of the input values in MP-SPDZ [61].

1 var shares = jiff_instance.share(input);
2 var product = shares [0];
3 for (var i = 1; i < jiff_instance.party_count; i++) {
4 product = product.smult(shares[i]);
5 }
6 console.log(jiff_instance.open(product));

Listing 6.3: Computing the product of the input values in Jiff [84].

while retaining flexibility. Further, it has a unique architecture that makes use

of a central logistics server, which provides resilience against network failures

and permits compute parties to participate in the computation without needing

a public IP address. However, the potentially malicious logistics server enables

novel types of attackers which need to be considered should Jiff be chosen for

deployment in a productive setting. Further, it is not clear whether or not Jiff

is currently maintained. In its current state, it is fit to conduct SMPC, however,

bug reports and pull requests are not answered by the developers.

Nevertheless, we deem Jiff the most suitable library for providing SMPC

capabilities to the prototype. The reason for this choice is that in our opinion, Jiff

is the easiest-to-use library for SMPC that we encountered. In particular, asyn-

chronous input parties are very straight-forward to implement in Jiff, whereas

MP-SPDZ and MPyC require considerable efforts to achieve the same. Addition-

ally, Jiff is written in JavaScript and thus able to run in modern web browsers.

In particular, a web application used by participants for submitting survey re-

sponses could directly utilise Jiff for sharing confidential data. MP-SPDZ, MPyC

and all other technologies for SMPC the authors of this work are aware of do

not support execution in a current browser and would require installation of

additional software.

We discuss the version and configuration of Jiff that we employ in Subsec-

tion 6.2.3.

6.2.2 technology for sgx

In order to make use of Intel SGX, one has several options. First, it is possible

to develop native SGX applications that are hand-written to use SGX’ features.

This approach gives developers maximum control and allows a fine-grained

division of the application into enclave code and non-enclave code. However, it

also requires expert knowledge, and the resulting SGX-enabled applications are

47

implementation

restricted to SGX-enabled platforms. In order to write native SGX applications,

one typically makes use of a Software Development Kit (SDK), which makes SGX’

features available in a high-level programming language. Notable examples for

SGX SDKs are the Intel SGX SDK
4
(C/C++), the Open Enclave SDK

5
(C/C++),

Fortanix EDP
6
(Rust), Teaclave

7
(Rust, Python, Java [82]) and EGo

8
(Go).

Further, there are solutions aiming to enable running unmodified applica-

tions in SGX. Some of these solutions (e. g., Gramine-SGX, which was discussed

in Subsection 3.2.1, but also Mystikos
9
, Occlum

10
or SGX-LKL

11
) are or re-

semble library OSes, others provide runtimes that securely run interpreted

programming languages (e. g., ScriptShield, see Subsection 3.2.2, for JavaScript,

Lua and Squirrel, or Enarx
12

for WebAssembly). This approach reduces require-

ments in terms of development effort and expertise in Intel SGX, however, it

comes at the cost of a larger TCB and less computational performance.

In order to utilise Jiff, we must develop our application in JavaScript, and

thus utilise a technology that allows us to run a JavaScript interpreter inside SGX

enclaves. In Section 3.2, we investigated Gramine-SGX and ScriptShield, both

of which meet this requirement. ScriptShield, however, states
13

that it requires

Ubuntu 16.04, which is outdated. Additionally, it does not seem to be actively

maintained and we were unable to compile it on our test system. In comparison,

Gramine-SGX is under active development and has reached a high level of

maturity. It has excellent documentation and is used in a number of productive

systems
14
. For these reasons, we choose Gramine-SGX for implementing the

SGX-based prototypes.

6.2.3 versions

We use Jiff in the latest available version, i. e., commit 8ea565d15 . As previously
mentioned, parties in Jiff communicate via encrypted channels.

We use node.js in version v18.14.1 for interpreting JavaScript code. In

order to run the prototypes on protected hardware, we use Gramine-SGX in

version 1.4 with a manually applied patch
16

4 https://github.com/intel/linux-sgx
5 https://openenclave.io/sdk/
6 https://edp.fortanix.com/
7 https://teaclave.apache.org/
8 https://www.edgeless.systems/products/ego/
9 https://github.com/deislabs/mystikos

10 https://occlum.io/
11 https://github.com/lsds/sgx-lkl
12 https://enarx.dev/
13 See: https://github.com/OSUSecLab/scriptshield
14 See: https://gramine.readthedocs.io/en/latest/gramine-users.html
15 https://github.com/multiparty/jiff/tree/8ea565d3d0becde8f71243fb9daea6

ef0ba9bb7e
16 The patch we manually applied can be found under https://github.com/gramineproject/

gramine/pull/1203. It does not change functionalities in Gramine, but fixes a bug that hinders

installation. After we performed our experiments, the patch has been merged into Gramine’s

main branch, presumably making it part of the upcoming release.

48

https://github.com/intel/linux-sgx
https://openenclave.io/sdk/
https://edp.fortanix.com/
https://teaclave.apache.org/
https://www.edgeless.systems/products/ego/
https://github.com/deislabs/mystikos
https://occlum.io/
https://github.com/lsds/sgx-lkl
https://enarx.dev/
https://github.com/OSUSecLab/scriptshield
https://gramine.readthedocs.io/en/latest/gramine-users.html
https://github.com/multiparty/jiff/tree/8ea565d3d0becde8f71243fb9daea6ef0ba9bb7e
https://github.com/multiparty/jiff/tree/8ea565d3d0becde8f71243fb9daea6ef0ba9bb7e
https://github.com/gramineproject/gramine/pull/1203
https://github.com/gramineproject/gramine/pull/1203

7EVALUAT ION

In this Section, we describe the experimental apparatus used to evaluate the

performance of the platform for securely conducting empirical studies described

in Section 5.3. Section 7.1 describes the methodology of our experiments. Sec-

tion 7.2 gives the results of the evaluation.

7.1 methodology

We implemented four different platform prototypes:

• Naive: A platform the is able to receive survey responses from study

participants and run a script for statistical analysis on them, but neither

uses a TEE nor SMPC to protect their privacy.

• SGX-only: A platform similar to PeQES (see Section 5.1) in that is uses a

TEE to ensure privacy of survey responses.

• SMPC-only: A platform as described in Section 5.2, in which survey re-

sponses are secret-shared between several computation parties and which

uses SMPC to perform computations on them.

• SMPC-SGX: A platform that uses both SMPC and a TEE to protect con-

fidentiality of survey responses during storage and computation (see Sec-

tion 5.3).

The architectures of the implemented prototypes are shown in Figure 7.1.

Naive is implemented as a JavaScript application running on node.js. In the

prototype SGX-only, this application runs in an SGX enclave using Gramine-

SGX. The participants are implemented as curl1 commands, which submit their

responses directly to the platform using HTTP POST requests. In SMPC-only
and SMPC-SGX, the platform is realised as 𝑛 compute parties (in Figure 7.1

with 𝑛 = 3). These parties, the logistics server and the participants are JavaS-
cript applications that use Jiff for secret sharing and SMPC. In SMPC-SGX, the
computation parties run in SGX enclaves using Gramine-SGX. We note that

in a real-world setting, participants would enter their survey responses via a

web application delivered through a web browser. Our approach of simulating

participants through command-line applications does not lead to distorted per-

formance measurements, as it uses the same REST-API for communication as

potential web applications would.

In the following, we describe the configurations of Jiff and Gramine that we

use for our experiments. In all experiments involving SMPC-only or SMPC-SGX,
we set 𝑛 = 3. This is a sensible choice, as this number of computation parties is

low enough to be used in practice, but large enough to tolerate one corrupted

party. We use Jiff’s BigNumber,FixedPoint andNegative Number extensions,which
enable computations using negative and fixed-point numbers. We instruct Jiff to

use an accuracy of 5 integer digits and 2 decimal digits, requiring us to set 𝑝 to a

1 https://curl.se/

49

https://curl.se/

evaluation

Platform

�

Participants

g

� Data

(a) Naive and SGX-only

Logistics Server

T

𝐶2

�
𝐶3

�
𝐶1

�

Participants

g

� Data Shares

(b) SMPC-only and SMPC-SGX

Figure 7.1: Architectures of the implemented prototypes. (a) shows the architecture of

Naive and SGX-only. Here, participants send their responses directly to the platform.

(b) shows the architecture of SMPC-only and SMPC-SGX. Here, participants send secret
shares of their response to the logistics server, which relays them to the respective

computation party. The computation parties communicate with each other via the

logistics server.

prime with at least 14 digits. We thus choose 𝑝 = 260 623 316 657 987, setting
the finite field the SMPCs are performed in to ℤ260 623 316 657 987. All entities

communicate with the logistics server using a REST API provided by Jiff through

Jiff’s RestAPIServer extension. Unless stated otherwise, the logistics server acts
as a crypto provider, i. e., it supplies the computation parties with Beaver triplets

used to facilitate more efficient multiplication (see Subsection 2.2.5).

Further, we note that we disable Jiff’s transport encryption for the experi-

ments. The reason for this is that Jiff uses libsodium.js2 for performing asymmetric

cryptography. Unfortunately, libsodium.js in version 0.7.9 seems to be incom-

patible with Gramine-SGX, as attempts to use both technologies in conjunction

result in errors which we could not resolve. For fairness, we also use no encryp-

tion with Naive and SGX-only and note that the choice of not using encryption
does not change the relative results of the performance evaluation.

The two enclaved prototypes SGX-only and SMPC-SGXmake use of Intel

SGX through Gramine-SGX. In both cases, the respective enclave is built to only

contain node.js and its dependencies. The code implementing the platform is

loaded at runtime, where its integrity is verified by Gramine-SGX. We specify

the enclaves’ EPC size as 4GB, which is necessary because node.js requires a
relatively large amount of memory.

The experiments are performed on one server machine running Ubuntu
22.04.2 LTS. It possesses an Intel Xeon E-2186G CPU with 6 cores and 64GB
of RAM. Each experiment that we perform is conducted in the following man-

ner: First, the logistics server is launched (omitted in the case of Naive and

SGX-only). Afterwards, the platform/computation parties are started. When

startup has completed, the participants start submission of their inputs concur-

rently. After all 𝑚 participants have submitted their input, the platform/com-

2 https://www.npmjs.com/package/libsodium-wrappers

50

https://www.npmjs.com/package/libsodium-wrappers

7.1 methodology

putation parties execute the script for statistical analysis. Diverging from the

protocol proposed in Section 5.2 and Section 5.3, computation parties in the

SMPC-only and SMPC-SGX prototypes perform a reconstruction of the result

using the result shares in order to measure the performance of this process.

During the experiments, various measurements are performed. The runtime

of the script for statistical analysis is called the compute time. For SMPC-only and
SMPC-SGX, we measure the time taken by the participants to split the response

into secret shares and the time taken by the computation parties to reassemble

the result, which we call share time and open time. In some experiments, the

computation parties engage in preprocessing, generating Beaver triplets. The

time taken by preprocessing is called preprocessing time.
We exclude measuring the duration of starting enclaves, because this process

is only performed once per study per platform/computation party and does

typically not take longer than a few seconds. The reason for this startup delay

is the fact that old implementations of Intel SGX, including the one in our test

machine, do not support dynamic memory allocation. Instead, the maximum

amount of memory the enclave is permitted to own must be allocated at startup

time, which is 4GB in our case. Recent incarnations of SGX-enabled processors

support Enclave Dynamic Memory Management (EDMM) [80], which alleviates

this issue and allows for faster startup times.

If not specified otherwise, the measured values presented in Section 7.2 are

calculated as the mean of running the respective experiment 100 times. Note that

some experiments yield multiple measurements, e. g., running an experiment

with the prototype SMPC-only yields three computation time measurements,

because each of the three computation parties measures this value separately.

Script for Statistical Analysis Each participant submits one natural number

to the computation. Unless stated otherwise, the script for statistical analysis used

in our performance measurements performs a two-sample t-test [36], which is a

regularly used primitive in statistical analyses. A two-sample t-test is performed

by evaluating

𝑇∗
2 =

𝑋1 − 𝑋2√
Var(𝑋1)

𝑛1
+ Var(𝑋2)

𝑛2

(7.1)

where 𝑋1 and 𝑋2 are vectors consisting of the inputs by parties with odd and

even IDs respectively, 𝑛1 and 𝑛2 their respective sizes, 𝑋 the mean of 𝑋 and

Var(𝑋) the variance of 𝑋 . Given a sample 𝑋 = (𝑥1 , . . . , 𝑥𝑛𝑋), the variance of
𝑋 is defined as

Var(𝑋) = 1

𝑛𝑋 − 1

𝑛𝑋∑
𝑖=1

(𝑥𝑖 − 𝑥)2 (7.2)

However, this formula is not ideal for SMPC because it requires 𝑛𝑋 expensive

multiplications to be evaluated. The alternative formulation

Var(𝑋) =
𝑛𝑋

∑𝑛𝑋
𝑖=1

𝑥2
𝑖
−
(∑𝑛𝑋

𝑖=1
𝑥𝑖
)2

𝑛2
𝑋

(7.3)

is better-suited, because it can be optimised more effectively [85]. Each value in

𝑋 is the input of one survey participant. We note that the formula requires each

input squared, however, squaring under SMPC is expensive. For this reason, we

51

evaluation

instruct the participants to not only provide a secret shared 𝑥𝑖 as input, but also

its secret shared square 𝑥2
𝑖
. Notably, this does not leak information about 𝑥𝑖

and saves 𝑛𝑋 multiplications. Further, we observe that Equation 7.1 involves

evaluating a square root, which is an expensive operation under SMPC as well.

For this reason, we perform the t-test by first evaluating

(𝑇∗
2)2 =

(
𝑋1 − 𝑋2

)2
Var(𝑋1)

𝑛1
+ Var(𝑋2)

𝑛2

(7.4)

under SMPC and calculating

√
(𝑇∗

2)2 = 𝑇∗
2 locally

3
. As

√· and (·)2 are reversible,
this does not leak information about the inputs that would not have been evident

from the original computation. In order to give a fair comparison, all prototypes

perform the t-test as portrayed above.

We conduct the following experiments:

E1: Measure compute time and open time for a varying number of survey

participants, i. e., for 𝑚 ∈ {5, 10, 50, 100, 500, 1000}. Compute time is

measured for all prototypes, open time is only measured in SMPC-only4

E2: Considering a setting in which the logistics server does not act as a crypto

provider, measure compute time and preprocessing time for a varying

number of survey participants, i. e., for 𝑚 ∈ {5, 10, 50, 100, 500, 1000}.

E3: Measure the compute time in a setting with 𝑚 = 100 while varying

the workload. The workload is varied by having the script for statistical

analysis calculate 𝑢 t-tests for 𝑢 ∈ {1, 2, 4, 8}.

E4: Measure the share time in a scenario where each participant inputs ℓ

natural numbers into the computation for ℓ ∈ {5, 10, 50, 100, 500, 1000,
5000, 10 000}.

Experiments E1 to E3 are performed using the platform prototypes we

implemented. Experiment E4 does not depend on the platform and is run in an

offline setting.

7.2 results

In this Section, we present the results of our experiments.

7.2.1 varying the number of survey participants

In experiment E1, we compare the four implemented prototypes with regards to

compute time. Further, we measure the time to reconstruct shared secrets (open

time) in SMPC-only. In order to determine the impact of the number of survey

3 In reality, calculation of the square root is performed by the researcher after reconstructing the

result of the SMPC via the secret shares they received. In our prototype, the computation parties

perform this step after reconstructing the result.

4 We only measure open time in a non-SGX setting, because in a real-world setting, this step is

performed by researcher 𝑅, presumably via a non-enclaved application.

52

7.2 results

participants 𝑚 on the measured durations, we vary it. Specifically, we perform

measurements for each 𝑚 ∈ {5, 10, 50, 100, 500, 1000}. The measured com-

pute times of this experiment can be found in Table 7.1 and Figure 7.2. The open

times are visualised in Figure 7.3.

Considering the compute times, we observe that the prototypes not relying

on SMPC outperform the others by several orders ofmagnitude. This is expected

for several reasons: first, SMPC requires communication, which is expensive in

terms of performance. Second, SMPC is realised using Jiff, which loads a large

amount of dependencies into memory, potentially fostering page-faults. Third,

we use Jiff with all extensions applied (BigNumber, FixedPoint and Negative),

which add additional overhead compared to the non-SMPC-based prototypes

that operate on unboxed numbers.

SGX-only is ≈ 4 − 6× slower in its computation phase as Naive. This is in
line with the overhead imposed by Gramine-SGX as reported by its authors (see

Subsection 3.2.1). In comparison, SMPC-SGX is ≈ 10× slower than SMPC-only.
We explain the reasons for this behaviour in Subsection 8.1.1.

Further, we observe that compute time only increases slightly as 𝑚 grows.

This is because 𝑚 only influences the number of additions performed under

SMPC. The number of multiplications and divisions remains unchanged. Not-

ably, addition incurs no communication cost, which means that increasing 𝑚

does not increase the number of messages sent. It only increases local computa-

tion, which impacts computation time only slightly. Further, the time to open,

i. e., reconstruct a secret-shared value from shares, is not influenced by 𝑚.

7.2.2 preprocessing in smpcs

This Section gives the results of experiment E2. This experiment is performed

only for SMPC-only and SMPC-SGX, because the other prototypes do not make

use of SMPC. It differs from the other experiments in that the computation

parties perform a preprocessing phase. In this scenario, the logistics server does

not act as a crypto provider. The mean and standard error of preprocessing time

and compute time using Jiff’s preprocessing feature are shown in Table 7.2. We

note that the results shown are the mean of 10 (as opposed to 100) experiment

runs, the reason for which are the relatively long run times of this experiment.

For prototype SMPC-only, the use of preprocessing shifts part of the work
performed by the computation parties from the computation phase to the pre-

processing phase. We observe that the compute time has been reduced by≈ 50%.

The reason for this is that the computation parties no longer need to query

the logistics server for Beaver triplets during the computation phase, which re-

duces communication overhead. However, preprocessing requires a considerable

amount of time before computation can begin. In particular, preprocessing time

is longer than the time saved during the computation phase. The reason for this

is that preprocessing requires 𝒪(𝑛2)messages, whereas querying the server for

Beaver triplets only requires 𝒪(𝑛)messages. The increase in preprocessing time

as 𝑚 grows is unexpected at first sight, as the amount of preprocessing to be

performed does not depend on 𝑚. It is, however, explained with the fact that in

this experiment, the participants begin sending their inputs before preprocessing
has finished, placing additional load on the computation parties.

53

evaluation

5 10 50 100 500 1000

m

300000

320000

340000

360000

380000

400000

420000

440000
T

im
e

[m
s]

prototype

SMPC-SGX

5 10 50 100 500 1000

m

28000

30000

32000

34000

36000

38000

40000

42000

T
im

e
[m

s]

prototype

SMPC-only

5 10 50 100 500 1000

m

0.0

0.5

1.0

1.5

2.0

T
im

e
[m

s]

prototype

SGX-only

Naive

Figure 7.2: Results of experiment E1 with regards to compute time. Note the three box

plots reside in different sections of the y-axis.

54

7.2 results

𝑚 Naive SGX-only

5 0.06± 0.00ms 0.29± 0.00ms

10 0.08± 0.00ms 0.31± 0.01ms

50 0.17± 0.01ms 0.80± 0.04ms

100 0.16± 0.01ms 0.76± 0.04ms

500 0.22± 0.01ms 0.94± 0.04ms

1000 0.27± 0.01ms 1.03± 0.05ms

(a) Naive and SGX-only

𝑚 SMPC-only SMPC-SGX

5 29.13± 0.01 s 296.95± 0.17 s

10 29.11± 0.02 s 302.00± 0.22 s

50 29.27± 0.01 s 297.84± 0.21 s

100 29.32± 0.02 s 299.28± 0.28 s

500 32.00± 0.04 s 301.56± 0.31 s

1000 33.33± 0.21 s 333.73± 2.51 s

(b) SMPC-only and SMPC-SGX

Table 7.1: Compute times of the different prototypes as measured in experiment E1. We

report the mean value and standard error per experimental configuration. The results

for Naive and SGX-only are shown in (a), the results for SMPC-only and SMPC-SGX
are shown in (b).

5 10 50 100 500 1000

m

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
im

e
[m

s]

prototype

SMPC-only

Figure 7.3: Open times in SMPC-only, measured over the course of experiment E1. The

open times are relatively constant as 𝑚 increases.

55

evaluation

𝑚 preprocessing compute

5 64.97± 0.21 s 16.70± 0.12 s

10 64.51± 0.14 s 16.85± 0.10 s

50 65.91± 0.13 s 16.83± 0.08 s

100 67.19± 0.09 s 16.68± 0.07 s

500 80.52± 0.22 s 16.73± 0.10 s

1000 100.96± 0.17 s 16.66± 0.06 s

(a) SMPC-only

𝑚 preprocessing compute

5 2215.51± 50.27 s 1175.90± 52.17 s

10 2298.04± 33.98 s 1260.83± 36.51 s

50 2316.50± 50.22 s 1250.29± 31.72 s

100 2353.87± 39.19 s 1219.31± 48.46 s

500 2542.64± 24.37 s 1290.32± 22.76 s

1000 2498.52± 39.24 s 1362.04± 17.82 s

(b) SMPC-SGX

Table 7.2: Preprocessing and compute times measured throughout experiment E2. (a)

shows the results for prototype SMPC-only, (b) shows the results for SMPC-SGX. We

provide mean and standard error values.

SMPC-SGX has a different behaviour when preprocessing is used. Prepro-

cessing time is ≈ 2000 s, compute time is ≈ 1300 s. In Experiment E1, without

preprocessing, SMPC-SGX is ≈ 10× slower than SMPC-only. In this experiment,

this factor is increased considerably. Preprocessing in SMPC-SGX is≈ 30× slower

than in SMPC-only; for computation this factor is ≈ 80. We suspect that the

reason for this behaviour lies in the increased memory usage caused by prepro-

cessing. Instead of acquiring correlated random numbers (e. g., Beaver triplets)

on-demand from the logistics server, the computation parties generate them in

advance and store them until needed. The storage required for these numbers

must not be underestimated. As we use Jiff’s BigNumber extension, each value

has a non-trivial memory footprint on its own. Additionally, the computation we

perform requires a large amount of correlated random numbers, e. g., one single

secure division requires 8780 Beaver triplets and 17 566 other correlated, secret-
shared numbers. In light of the fact that EPC size is very limited in pre IceLake

architectures such as our test system’s, we assume the cost of page swapping in

SGX to be the culprit for these differences in performance.

7.2.3 varying the workload

In experiment E3, we measure computation time as we vary the workload ex-

ecuted by the prototype platforms. For this, we define 𝑢 as the number of t-tests

calculated by the script for statistical analysis and perform measurements of the

56

7.2 results

𝑚 Naive SGX-only

1 0.26± 0.01ms 1.19± 0.05ms

2 0.26± 0.01ms 1.18± 0.05ms

4 0.29± 0.01ms 1.27± 0.06ms

8 0.39± 0.01ms 1.58± 0.06ms

(a) Naive and SGX-only

𝑚 SMPC-only SMPC-SGX

1 29.45± 0.08 s 291.94± 0.43 s

2 46.31± 0.03 s 711.87± 0.39 s

4 88.57± 0.05 s 2361.82± 2.31 s

8 175.11± 0.09 s 6487.31± 7.24 s

(b) SMPC-only and SMPC-SGX

Table 7.3: Compute time in the four prototypes when workload is increased. (a) shows

the mean and standard error of Naive and SGX-only’s compute times; (b) shows the

same metrics for SMPC-only and SMPC-SGX.

compute time for all 𝑢 ∈ {1, 2, 4, 8}. Note that in this experiment, the survey

participants do not alter the amount of inputs they send to the platform. Rather,

the platform performs multiple iterations calculating t-tests reusing the parti-

cipants’ inputs repeatedly. The results of these experiments are given in Table 7.3

and Figure 7.4. Compute times using Naive and SGX-only are negligible even
for 𝑢 = 8. SMPC-only’s compute time clearly shows the linear growthwe expect

it to have as 𝑢 is increased. SMPC-SGX’s compute times grow faster. This beha-

viour is somewhat unexpected, however, we conjecture that it can be explained

through the facts that Jiff sends additional management messages (heartbeats) in
longer-running applications and that an increased workload increases memory

usage, resulting in more time spent on page swapping.

7.2.4 varying the input length

In experiment E4, we investigate the performance impact of the survey’s size for

participants. This experiment is not conducted using the platform prototypes,

but using a script that utilises Jiff’s API for splitting values into secret shares.

More specifically, the scrips splits an array of size ℓ into secret shares using a

(3, 2) Shamir’s secret sharing scheme using Jiff’s share_array5 function. In
order to assess the impact of extensions for supporting arbitrarily large numbers,

fixed-point numbers and negative numbers, we perform the experiment multiple

times progressively applying more extensions.

The results are given in Table 7.4. Generally speaking, applying extensions

lowers performance. With all built-in extensions applied, sharing is about an

5 https://multiparty.org/jiff/docs/jsdoc/module-jiff-client-JIFFClient.ht
ml#share_array

57

https://multiparty.org/jiff/docs/jsdoc/module-jiff-client-JIFFClient.html#share_array
https://multiparty.org/jiff/docs/jsdoc/module-jiff-client-JIFFClient.html#share_array

evaluation

1 2 4 8

Workload Size

100

101

102

103

104

105

106

107

T
im

e
[m

s]

SMPC-SGX

SMPC-only

SGX-only

Naive

Figure 7.4: Compute time in the four prototypes when workload is increased. Note that

the y-axis is scaled logarithmically.

order of magnitude slower than without any extensions. Further, the time re-

quired for secret sharing scales linearly with ℓ and is below one second even for

ℓ = 10 000 with all built-in extensions applied.

58

7.2 results

ℓ No ext. BigNumber

5 1.50± 0.01ms 5.76± 0.01ms

10 1.89± 0.01ms 7.38± 0.04ms

50 2.82± 0.02ms 17.64± 0.11ms

100 3.90± 0.03ms 25.00± 0.19ms

500 12.65± 0.07ms 59.55± 0.42ms

1000 22.88± 0.09ms 95.75± 0.48ms

5000 78.59± 0.48ms 360.32± 0.69ms

10 000 142.17± 0.45ms 675.78± 1.39ms

(a) No extensions (left) and BigNumber extension (right).

ℓ +FixedPoint +Negative

5 4.60± 0.02ms 4.69± 0.01ms

10 6.30± 0.02ms 6.49± 0.02ms

50 17.38± 0.06ms 18.15± 0.03ms

100 27.00± 0.13ms 28.59± 0.16ms

500 75.76± 0.26ms 81.68± 0.23ms

1000 128.97± 0.36ms 142.07± 0.37ms

5000 469.12± 0.95ms 504.99± 1.03ms

10 000 906.15± 1.51ms 985.19± 1.77ms

(b) BigNumber and FixedPoint extension (left) and BigNumber, FixedPoint and Negative exten-

sions.

Table 7.4: Mean and standard error of share times for participants when varying the

input size ℓ and the applied Jiff extensions. The extensions BigNumber, FixedPoint, and

Negative are applied progressively from left to right and top to bottom.

59

8DI SCUS S ION

In this Section, we discuss the system proposed in Section 5.3 considering the

privacy guarantees it provides and its performance. In Section 8.1, we discuss

our results in terms of performance presented in Section 7.2 and revisit the

research questions posed in Chapter 1. In Section 8.2, we discuss the limitations

of our approach, both of technical and non-technical nature, and outline possible

future work.

8.1 findings

Research question 1 is concerned with the security benefits of combining a TEE

with SMPC as this work proposes. As noted in Section 5.3, our platform exceeds

the security guarantees of both PeQES-like systems (relying solely on TEEs for

providing security) and systems that ensure security through SMPC only. It is

superior to the former by ensuring that even in the event of vulnerabilities in

SGX or insecurely programmed platform code, the participants’ privacy is not

compromised. It improves on purely SMPC-based platforms by making hostile

takeover of computing parties more difficult even for attackers that enjoy priv-

ileged access to the employed computing infrastructure. Further, it introduces

no structural vulnerabilities: every attack possible on the proposed system is

either also possible on platforms solely based on TEEs or purely SMPC-based

ones. Unforeseen interactions between SGX and SMPC that introduce novel

vulnerabilities are unlikely, as the two technologies operate on different levels of

our system and are oblivious of one another.

Prompted through research question 2, we implemented four prototypes

of platforms for conducting empirical studies in order to study their efficiency.

We find that the platform we propose performs worse than every investigated

alternative. This is evident through the results provided in Subsection 7.2.1,

which show that the platform needs ≈ 10min for performing one single t-test.

That being said, it might still be fast enough for its intended purpose, which is
running a script for statistical analysis of an empirical study exactly once. In light

of the fact that empirical studies typically require months of preparation, study

design and other work, up to several days of compute time for statistical analysis

may be acceptable. However, in order to assess our prototype’s fitness for this

task, a more realistic statistical analysis script is needed for benchmarking, ideally

as a result of cooperation with domain experts. We defer further experimentation

of this kind to future work.

We also note that the low performance of our prototype might in part be

explained not by conceptual issues, but by implementation-specific issues. Our

prototype SMPC-SGX encompasses a large codebase. For example, it depends on

a fully-fledged JavaScript runtime and on Jiff, which has 502 transitive depend-
encies. This leads to high memory consumption, which slows down execution.

An optimisation of SMPC-SGX encompassing a switch to a library with lower

memory consumption could improve performance. This improvement would

be most effective if the JavaScript programming language were ditched in favour

of a language not requiring a large runtime environment. Lastly, implementing

61

discussion

Figure 8.1: Results of profiling SMPC-SGX. Serving the system call clock_gettime
accounts for 47.84% of time spent.

the prototype as a native SGX application as opposed to using Gramine-SGX

could further improve performance, because non-critical parts of the application

could be shifted outside the enclave.

Further, our evaluation was performed using an Intel processor preceding

the IceLake architecture. Such older processors severely limit SGX’ performance

through the following factors. As discussed in Section 2.3.1, the EPC of pre-

IceLake processors is limited to 128 to 256MB, which our application exceeds

by far. This leads to significant overhead through page swapping. Further, pre-

IceLake architectures forbid usage of certain instructions in enclave mode
1
, most

importantly the RDTSC instruction. RDTSC is used for determining the current

time, e. g., when application code calls the POSIX function gettimeofday2 .
During runtime, Gramine’s library OS detects whether or not RDTSC inside

enclaves is supported on the current platform. If this is not the case, it implements

gettimeofday through a more expensive call to non-enclave code, in particular

clock_gettime3 . This mechanism incurs a large overhead on applications

making extensive use of gettimeofday. Through profiling (see Figure 8.1) of
SMPC-SGX we discover that indeed much of its time running is spent serving

the system call clock_gettime, which means that the application performs

many calls to gettimeofday. However, we do not know the reason for this

behaviour. The aforementioned complexity and multiple layers of abstraction

found in SMPC-SGXmake investigation hard.

Again, these issues are specific to older Intel architectures. It may thus well

be the case that simply employing newer server hardware significantly improves

performance up to the point of it being on par with SMPC-only.
The explanations for the poor performance of SMPC-SGX partly answer

1 See: https://gramine.readthedocs.io/en/v1.4/performance.html#effects-o
f-system-calls-ocalls

2 See: https://man7.org/linux/man-pages/man2/gettimeofday.2.html
3 See: https://github.com/gramineproject/gramine/blob/v1.4/pal/src/host/lin

ux/pal_misc.c#L32

62

https://gramine.readthedocs.io/en/v1.4/performance.html#effects-of-system-calls-ocalls
https://gramine.readthedocs.io/en/v1.4/performance.html#effects-of-system-calls-ocalls
https://man7.org/linux/man-pages/man2/gettimeofday.2.html
https://github.com/gramineproject/gramine/blob/v1.4/pal/src/host/linux/pal_misc.c#L32
https://github.com/gramineproject/gramine/blob/v1.4/pal/src/host/linux/pal_misc.c#L32

8.1 findings

research question 3, which asks for suitable technology for implementing the

proposed platform. In principle, the technologies utilised in our prototypes can

be used to build a platform for securely conducting empirical studies. Intel SGX

is suitable as the utilised TEE because it is widely available. Gramine-SGX is, in

principle, suitable because it enables unmodified language interpreters to enjoy

SGX’ security guarantees, allowing usage of high-level scripting languages for

performing statistical analyses protected by enclaves. Jiff is suitable because it

enables SMPC with security against a semi-honest minority on both client- and

server-side. However, this software stack in combination with the hardware our

experiments are performed on yields poor performance in executing the script

for statistical analysis. On the basis of our experiments we cannot conclusively

determine whether or not SMPC-SGX’ performance suffices to be deployed in a

real-world setting. Further experimentation, preferably using a realistic script

for statistical analysis, is needed to come to such a conclusion. However, as the

constrains on computation time in real-world empirical studies typically permit

runtimes of several hours or days, we strongly believe that the proposed system

is generally suitable for its envisioned tasks.

If this is not the case and compute time turns out to be a serious bottleneck

of the platform, further possibilities for improving performance can be explored.

For example, a conceivable optimisation is that the platform only protects compu-

tations via SMPC and TEEs that process sensitive data. Once data are sufficiently

aggregated as to not threaten the privacy of participants
4
, analysis continues as

a local computation protected by a TEE. This way, personal data of participants

enjoy the enhanced security guarantees of our platform. Data that do not pose a

privacy risk can be processed without SMPC-induced performance limitations

and continue to have their integrity protected by the respective TEE.

8.1.1 impact of the number of participants

The results of experiment E1 presented in Subsection 7.2.1 suggest that the

number of study participants 𝑚 does not necessarily have a strong influence on

compute time in SMPC-only and SMPC-SGX. However, this cannot lead to the
conclusion that 𝑚 never heavily impacts compute time. The script for statistical

analysis used in experiment E1, which computes a two-sample t-test, requires

a constant number of messages with regards to 𝑚. This is made possible by

manually optimising the computation, which we discuss in Section 7.1. However,

not all computations can be optimised as to have linear complexity in terms of

communication. Computations that cause the exchange of a larger number of

messages as𝑚 increases (e. g., by calculating the product of the input values) will

indeed suffer from degraded performance. This is a fundamental difference of

the SMPC-based and the non-SMPC-based platforms, which perform all com-

putations locally and have negligibly short compute times even in the presence

of computations requiring a large number of multiplications. Further research

is needed to assess the potential impact of this issue in real-world settings.

4 This can be measured through a suitable quantification of privacy, e. g., differential privacy [40].

63

discussion

8.1.2 feasibility of preprocessing

Experiment E2 has investigated compute times in SMPC-only and SMPC-SGX
when preprocessing is used. The time cost of preprocessing itself is no relevant

factor in a real-world setting, as it can be performed in parallel to the data

collection phase, in which participants are allowed to submit responses and

which typically lasts days or weeks.

On the one hand, SMPC-only demonstrates that preprocessing in Jiff can

reduce computation time by a significant amount. On the other hand, SMPC-SGX
does not profit from preprocessing and performs much worse compared to

experiments in which no preprocessing is used. We believe that this is due to the

hardware limitations of pre-IceLake Intel processor architectures discussed in

Subsection 7.2.2. On more recent architectures, SMPC-SGX should see similar

efficiency gains in the compute phase as SMPC-onlywhen preprocessing is used.
On a different note, preprocessing can negatively impact usability. Some

frameworks for SMPC (e. g., Jiff) require script developers to explicitly specify the

amount of preprocessing to be performed. For example, in order to enable pre-

processing for the example script for statistical computation, we had to explicitly

specify that we plan to perform three secret multiplications, one secret division

and six divisions by a public constant. This reduces code maintainability and

presumably acceptance of the platform. Future instances of the proposed plat-

form should thus make use SMPC implementations that determine the necessary

amount of preprocessing automatically (e. g., MP-SPDZ [61]).

8.1.3 impact of the workload size

Experiment E3’s results (presented in Subsection 7.2.3) show that compute time

scales approximately proportionally with workload in SMPC-only. Naive and
SGX-only show no such behaviour, which is probably due to optimisations

performed by node.js at runtime as well as measurement errors as a result of the

extremely short timespans being measured. SMPC-SGX’s compute time seems

to increase faster than the workload size, however, this is probably mostly due

to increased page swapping and might not be present on Intel’s IceLake and

post-IceLake architectures.

8.1.4 impact of the input length

In experiment E4wemeasure share time in participants. Thismetric is important

for usability from the participants’ point of view, since sharing is performed

on their personal device. The results are presented in Subsection 7.2.4. Even in

the event that a study requires participants to input 10 000 data points, share
time remains under one second, which is noticeable for users, but acceptable. In

the event that merely 500 inputs are required, the delay for sharing is < 0.1 s,
which does not impede user experience at all [89]. However, we note that sharing

performance in the field may differ, as participants typically do not complete

studies on potent server hardware. Surveys are rather answered on desktop

computers or mobile devices. However, this does not call into question the

applicability of our approach, as even very long share times can be worked

64

8.1 findings

around, making impact on user experience barely noticeable. For example, as

discussed in Subsection 8.2.1, sharing can be performed incrementally while

the participant works on answering the survey, minimising the computations

required at submission time.

8.1.5 performance comparison to related work

In this Section, we discuss SMPC-SGX’ performance when compared to ap-

proaches in related work.

PeQES [81] is evaluated by performing two-sample t-tests on the participants’

responses. It requires ≈ 100ms/130ms/900ms for computing five t-tests on a

sample size of 10/100/1000 survey responses, which is comparable to the per-

formance of SGX-only. It comes as not surprise that it significantly outperforms

SMPC-SGX.

For evaluating STAR [103], Servan-Schreiber et al. compute a two-sample

t-test on a dataset consisting of 1000 data points, which takes ≈ 90 s. Notably,
they argue that computation times ranging up to several minutes per statistical

computation are acceptable in a real-world setting, as scientists typically do not

require many of them. This boosts our confidence in the belief that SMPC-SGX,
even with its current performance, is efficient enough for real-world deployment.

Bogdanov et al. evaluate Rmind [23] by performing various statistical tests,

one of which is the two-sample t-test. Using three computation parties and a

sample size of 2000, this operation takes 570ms in the worst case. This signific-

antly outperforms SMPC-SGX,which is expected. It also outperforms SMPC-only,
which is likely due to the fact that Jiff uses less efficient protocols for basic arith-

metic operations than ShareMind, which Rmind is based on. In particular, Share-

Mind uses highly optimised algorithms for division by public constant and for

division of two secret values [22]. These two operations alone make up ≈ 90%
of computation time in SMPC-only.

The framework by Chida et al. [29] for SMPC-based privacy-preserving

statistical analyses outperforms SMPC-SGX, too. They are able to run two-sample

t-tests using three computation parties in 1.64 s, however they do not specify
the exact number of samples used as input.

It is evident that existing SMPC-based frameworks for statistical analysis

achievemuch better performance than SMPC-SGX. This is expected, as SMPC-SGX
is the only approach in the comparison that employs a TEE. However, we see

that existing frameworks also severely outperform SMPC-only. This can be due

to a number of factors, most importantly the facts that existing frameworks for

SMPC-based statistical analysis usemore efficient algorithms for basic arithmetic

operations than Jiff, use specialised algorithms for performing statistical tests and

have been heavily optimised. This indicates that the performance we measured

for SMPC-SGX is an upper bound for the potential performance of our general

approach. Future work employing SMPC frameworks specialised on statistical

analysis will presumably reduce compute times drastically.

65

discussion

8.2 limitations & future work

In this Section, we discuss limitations of this work, prompting further research.

Subsection 8.2.1 discusses threats to the validity of our performance measure-

ments. In Subsection 8.2.2, we discuss general limitations of our approach for

realising a platform for securely conducting empirical studies and possible ways

how to overcome them.

8.2.1 experimental apparatus

As discussed in the previous Sections, our experimental evaluation of the pro-

posed system’s performance is lacking in some aspects. The results acquired for

SGX-only and SGX-SMPC suffer from the limitations of the SGX implement-

ation found on pre-IceLake Intel processor architectures. For SGX-only, this
does not alter runtimes heavily as the prototype’s working data presumably fits

into the enclave’s EPC. However, SGX-SMPC’s performance is impeded, both by

the need to perform page swapping and the expensive workarounds needed to

avoid unsupported instructions (e. g., RDTSC). Our experiments should thus be

interpreted as providing an upper bound for the compute time of our approach.

We assume that compute time on Intel IceLake or later architectures is much

lower and in the same order of magnitude as SMPC-only’s.
However, SMPC-only’s real-world performance is presumably lower than

under our experimental conditions. The reason for this is that we host all compu-

tation parties on one physical machine. Communication thus suffers no network

delay, as would be case in a distributed system. As discussed in Section 4.1, net-

work latency is a major reason for poor performance of SMPCs. Because com-

putation of one two-sample t-test requires 280 548messages in our evaluation,

we believe that the real-world performance of SMPC-onlymay be significantly

lower as the performance reported in Subsection 7.2.1.

Further, as discussed in Subsection 8.1.4, our measurements for share time

may not be representative for share times imposed on real-world participants.

We perform our experiments on server hardware, whereas participants typically

complete studies through less potent desktop computers or mobile devices.

However, this does not influence the applicability of the platform we propose.

First, we assume that splitting survey responses on consumer-grade hardware is

still fast enough to be practical, especially in light of the fact that the number of

data points collected in a typical study is significantly lower than the number of

data points shared in experiment E4. Second, the process of sharing responses

can be optimised, e. g., by not performing the sharing after the survey has been

completed, but incrementally as the participant answers survey questions. In

essence, we highly doubt that sharing time impedes usability of the proposed

platform.

The same is true for open time (results presented in Subsection 7.2.1). We

measure open time in SMPC-only for one secret-shared value consistently as
being under 10ms. Note that this value includes communication cost for dissem-

inating secret shares amongst the computation parties. In a real-world setting,

the researcher performs the opening of secret values locally. Even in the case that

this step is performed on weak hardware and for a large number of secret-shared

values, we assume the computational overhead to be barely noticeable.

66

8.2 limitations & future work

A different limitation of our experimental apparatus lies in the fact that

the example script used in our experiments may not be representative of real-

world statistical analyses in surveys. The script performs a two-sample t-test,

which is commonly employed in empirical studies. However, performance meas-

urements using a real-world study, including a real-world script for statistical

analysis, would give more insights into the potential real-world performance of

our approach.

We note that each of these limitations in our experimental apparatus can be

addressed in future work. This would give further insights into the feasibility

and potential performance of our approach. However, through this work we

established a solid lower bound on our platform’s computational performance,

indicating that it is generally suitable for conducting empirical studies.

8.2.2 approach

The proposed platform aims to guarantee participant data in empirical studies.

A prerequisite for achieving this goal is that the platform is actually used in such

studies. However, we currently see one major obstacle for widespread adoption

of our approach, which is the usability of the system. From a participant’s point

of view, usability remains unchanged compared to other methods for conduct-

ing studies: surveys as still delivered as web applications, which the participant

completes via their web browser. Verification of the ethics board’s signature as

well as secret sharing can be performed in the background without requiring

the participant to intervene. However, usability from the point of view of the

researcher is impeded. Compared to an approach like PeQES [81] that requires

preregistration of the script for statistical data analysis, computations now have

to be defined as SMPCs. In the prototypes SMPC-only and SMPC-SGX, compu-

tations are expressed through the DSL provided by Jiff (see Subsection 6.2.1).

However, using this DSL requires expert knowledge both on SMPC and JavaS-

cript, which many researchers conducting empirical studies may not possess. For

this reason, we recommend that the platform be programmable through a DSL

inspired by a language commonly used for statistical analysis (e. g., Python, R)

that hides all SMPC-specific details. For example, Rmind [23] and the statistics

environment proposed by Chida et al. [29] are programmed in a DSL closely

resembling R and can presumably be used without requiring expert knowledge

on SMPC. If a similar approach were used in the proposed platform, the barrier

for adoption may be lowered. Unfortunately, the source code of these statistics

environments is not publicly available.

A different limitation concerning usability that may inhibit adoption of our

approach is that interactive data analysis is not longer possible. Researchers

must provide a script for statistical data analysis before data are collected. After

approval by the ethics board, this script can no longer be modified. PeQES faces

the same issue, andMeißner et al. [81] argue that researchers’ inability to perform

interactive data exploration ensures rigorous scientific conduct and increases

trust in the outcome of studies. They suggest that scripts for statistical data

analysis may be designed and debugged with the help of pilot studies (which

do not use on PeQES) prior to the main study or by running on synthetically

generated survey responses. Through such techniques, researchers continue to

be able to design the script for statistical analysis and form ideas for hypotheses

67

discussion

in an iterative process. Trust in scientific insights is established afterwards, when

larger confirmatory studies are run through the platform.

A different approach to tackle this issue is given in Rmind [23]. In Rmind,

a study plan specifies allowed and disallowed operations on the analysed data.

Query restrictions are enforced by deleting the algorithms supporting disal-

lowed operations from the computation parties. Further, the authors note that

in principle, Rmind could ensure output privacy of calculations by employing

differentially private [40] algorithms. These two techniques ensure that no private

information of data subjects can be output via statistical analyses, even when

interactive analysis by researchers is permitted. A similar approach could be util-

ised in a platform for securely conducting empirical studies: instead of signing the

researcher’s script for statistical analysis, the ethics board could provide a study

plan specifying the level of privacy that must be ensured throughout the ana-

lysis using some suitable quantification of privacy (e. g., differential privacy [40]).

The platform could enforce this level of privacy throughout interactive analysis.

We stress that this approach does not necessarily prevent scientific misconduct

through misuse of statistical methods, but ensures participants’ privacy.

A different limitation of our platform lies in the fact that our approach does

not protect metadata of participation in empirical studies. Meißner et al. [81]

note that PeQES cannot prevent the platform provider from learning which IP

addresses participated in a given study. The same is true for our platform.

We further note that the platform we propose is intended for conducting

quantitative studies, i. e., studies in which responses consist of numerical values.

We consider qualitative empirical studies out of scope for this work, however,

future work should investigate possibilities for performing computation not

only on numerical values, but also on text. Recent previous work has shown that

such computations are possible and feasible through secret sharing-based SMPC

protocols [93, 63, 94].

68

9SUMMARY & CONCLUS ION

9.1 summary

In this Section, we summarise the contents of this work. In Chapter 1, we motiv-

ate our research and state its goals. We further pose research questions, which

are investigated over the course of this work. Chapter 2 introduces relevant

mathematical and technological concepts, in particular the concepts of secret

sharing, SMPC and TEEs. In Chapter 3, we present previous work that facilitates

usages of these concepts in a practical setting. Previous work is discussed in

Chapter 4. We provide an overview on work aimed at combining SMPC and

TEEs in Section 4.1 and on work that improves confidentiality in empirical

studies or data analysis through either SMPC or TEEs in Section 4.2.

Chapter 5 describes our approach for strengthening security in empirical

studies. Sections 5.1 to 5.2 discuss platforms that ensure privacy in empirical

studies by utilising either TEEs or SMPC. Based on these protocols, Section 5.3

contains our main contribution, which is a platform fulfilling the same purpose,

but providing stronger privacy guarantees for participants. We implement four

prototypes realising such platforms using all possible combinations of using or

not using TEEs and SMPC for strengthening privacy. The choice of technology

for these prototypes is explained in Chapter 6. Chapter 7 describes the experi-

mental setup and the experiments for evaluating the prototypes’ performance.

Further, it presents the results of these experiments. In Chapter 8, we discuss

our approach in light of the security guarantees it provides and its performance.

Further, we discuss the limitations of our approach and make suggestions for

future work.

9.2 conclusion

In this work,we propose a platform for conducting quantitative empirical studies

while upholding scientific integrity and the privacy of participants. For achieving

this goal, we combine the well-known techniques of SMPC and TEEs. We con-

clude that the proposed platform is indeed suitable for performing the desired

task. It provides additional confidentiality guarantees compared to alternative

approaches, however, these additional guarantees are bought at the price of

prolonged computation time. The computational overhead imposed on survey

participants is negligible. We argue that the proposed platform is suitable for

use in empirical studies. However, further research is needed for determining

the platform’s real-world performance as well as its acceptance in the scientific

community.

69

bibliography

B I BL IOGRAPHY

[1] Kinan Dak Albab. JIFF: JavaScript Implementation of Federated Function-
ality. Apr. 2019. url: https://www.youtube.com/watch?v=S-Iky
OEgrfI (visited on 08/03/2023).

[2] Kinan Dak Albab et al. ‘Tutorial: Deploying Secure Multi-Party Compu-

tation on the Web Using JIFF’. In: 2019 IEEE Cybersecurity Development
(SecDev). Sept. 2019, pp. 3–3. doi: 10.1109/SecDev.2019.00013.

[3] Tiago Alves and Don Felton. ‘Trustzone : Integrated hardware and soft-

ware security’. In: Information Quarterly 3 (2004), pp. 18–24. url: http
s://cir.nii.ac.jp/crid/1572824500864199424.

[4] AMD. AMD64 Architecture Programmer’s Manual, Volume 2: System Pro-
gramming, 24593. en. 2006. url: https://www.amd.com/system/fi
les/TechDocs/24593.pdf.

[5] Ittai Anati et al. Innovative Technology for CPU Based Attestation and
Sealing. Tech. rep. Aug. 2013. url: https://www.intel.com/conten
t/www/us/en/developer/articles/technical/innovative-t
echnology-for-cpu-based-attestation-and-sealing.html.

[6] Ittai Anati et al. ‘Inside 6th gen Intel® Core™: New microarchitecture

code named skylake’. In: 2016 IEEE Hot Chips 28 Symposium (HCS). Aug.
2016, pp. 1–39. doi: 10.1109/HOTCHIPS.2016.7936222.

[7] Ross Anderson. ‘Cryptography and Competition Policy - Issues with

‘Trusted Computing’’. en. In: Economics of Information Security. Ed. by
L. Jean Camp and Stephen Lewis. Advances in Information Security.

Boston, MA: Springer US, 2004, pp. 35–52. isbn: 978-1-4020-8090-6.

doi: 10.1007/1-4020-8090-5_3. url: https://doi.org/10.10
07/1-4020-8090-5_3 (visited on 02/03/2023).

[8] Robin Ankele and Andrew Simpson. ‘On the Performance of a Trust-

worthy Remote Entity in Comparison to Secure Multi-party Computa-

tion’. In: 2017 IEEE Trustcom/BigDataSE/ICESS. ISSN: 2324-9013. Aug.

2017,pp. 1115–1122. doi: 10.1109/Trustcom/BigDataSE/ICESS.2
017.361.

[9] Robin Ankele et al. ‘Applying the Trustworthy Remote Entity to Privacy-

Preserving Multiparty Computation: Requirements and Criteria for

Large-Scale Applications’. In: 2016 Intl IEEE Conferences on Ubiquit-
ous Intelligence & Computing, Advanced and Trusted Computing, Scalable
Computing and Communications, Cloud and Big Data Computing, Internet
of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/S-
martWorld). July 2016, pp. 414–422. doi: 10.1109/UIC-ATC-ScalCo
m-CBDCom-IoP-SmartWorld.2016.0077.

[10] Gilad Asharov and Yehuda Lindell. ‘A Full Proof of the BGW Protocol for

Perfectly Secure Multiparty Computation’. en. In: Journal of Cryptology
30.1 (Jan. 2017), pp. 58–151. issn: 1432-1378. doi: 10.1007/s00145-
015-9214-4. url: https://doi.org/10.1007/s00145-015-921
4-4 (visited on 27/03/2023).

71

https://www.youtube.com/watch?v=S-IkyOEgrfI
https://www.youtube.com/watch?v=S-IkyOEgrfI
https://doi.org/10.1109/SecDev.2019.00013
https://cir.nii.ac.jp/crid/1572824500864199424
https://cir.nii.ac.jp/crid/1572824500864199424
https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://doi.org/10.1109/HOTCHIPS.2016.7936222
https://doi.org/10.1007/1-4020-8090-5_3
https://doi.org/10.1007/1-4020-8090-5_3
https://doi.org/10.1007/1-4020-8090-5_3
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.361
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.361
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0077
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0077
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/s00145-015-9214-4

bibliography

[11] Yonatan Aumann and Yehuda Lindell. ‘Security Against Covert Adversar-

ies: Efficient Protocols for Realistic Adversaries’. en. In: Journal of Crypto-
logy 23.2 (Apr. 2010), pp. 281–343. issn: 1432-1378. doi: 10.1007/s0
0145-009-9040-7. url: https://doi.org/10.1007/s00145-00
9-9040-7 (visited on 05/12/2022).

[12] Marshall Ball, Tal Malkin andMike Rosulek.Garbling Gadgets for Boolean
and Arithmetic Circuits. Report Number: 969. 2016. url: https://epr
int.iacr.org/2016/969 (visited on 21/03/2023).

[13] Andrew Baumann, Marcus Peinado and Galen Hunt. ‘Shielding Applic-

ations from an Untrusted Cloud with Haven’. In: ACM Transactions on
Computer Systems 33.3 (Aug. 2015), 8:1–8:26. issn: 0734-2071. doi:

10.1145/2799647. url: https://doi.org/10.1145/2799647
(visited on 16/03/2023).

[14] Donald Beaver. ‘Efficient Multiparty Protocols Using Circuit Random-

ization’. en. In: Advances in Cryptology — CRYPTO ’91. Ed. by Joan

Feigenbaum. Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer, 1992, pp. 420–432. isbn: 978-3-540-46766-3. doi: 10.1007
/3-540-46766-1_34.

[15] Donald Beaver. ‘Multiparty Protocols Tolerating Half Faulty Processors’.

en. In: Advances in Cryptology — CRYPTO’ 89 Proceedings. Ed. by Gilles
Brassard. Lecture Notes in Computer Science. New York, NY: Springer,

1990, pp. 560–572. isbn: 978-0-387-34805-6. doi: 10.1007/0-387-
34805-0_49.

[16] Zuzana Beerliová-Trubíniová and Martin Hirt. ‘Perfectly-secure MPC

with linear communication complexity’. In: Theory of Cryptography: Fifth
Theory of Cryptography Conference, TCC 2008, New York, USA, March
19-21, 2008. Proceedings 5. Springer, 2008, pp. 213–230.

[17] Michael Ben-Or, Shafi Goldwasser and Avi Wigderson. ‘Completeness

Theorems for Non-Cryptographic Fault-Tolerant Distributed Computa-

tion’. In: Proceedings of the twentieth annual ACM symposium on Theory of
computing. STOC ’88. New York, NY, USA: Association for Computing

Machinery, Jan. 1988, pp. 1–10. isbn: 978-0-89791-264-8. doi: 10.114
5/62212.62213. url: https://doi.org/10.1145/62212.62213
(visited on 10/11/2022).

[18] Azer Bestavros, Andrei Lapets and Mayank Varia. ‘User-centric distrib-

uted solutions for privacy-preserving analytics’. en. In: Communications
of the ACM 60.2 (Jan. 2017), pp. 37–39. issn: 0001-0782, 1557-7317.

doi: 10.1145/3029603. url: https://dl.acm.org/doi/10.114
5/3029603 (visited on 20/03/2023).

[19] Yudhijit Bhattacharjee. ‘The Mind of a Con Man’. en-US. In: The New
York Times (Apr. 2013). i ssn: 0362-4331. url: https://www.nytim
es.com/2013/04/28/magazine/diederik-stapels-audacious-
academic-fraud.html (visited on 18/04/2023).

72

https://doi.org/10.1007/s00145-009-9040-7
https://doi.org/10.1007/s00145-009-9040-7
https://doi.org/10.1007/s00145-009-9040-7
https://doi.org/10.1007/s00145-009-9040-7
https://eprint.iacr.org/2016/969
https://eprint.iacr.org/2016/969
https://doi.org/10.1145/2799647
https://doi.org/10.1145/2799647
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/0-387-34805-0_49
https://doi.org/10.1007/0-387-34805-0_49
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/3029603
https://dl.acm.org/doi/10.1145/3029603
https://dl.acm.org/doi/10.1145/3029603
https://www.nytimes.com/2013/04/28/magazine/diederik-stapels-audacious-academic-fraud.html
https://www.nytimes.com/2013/04/28/magazine/diederik-stapels-audacious-academic-fraud.html
https://www.nytimes.com/2013/04/28/magazine/diederik-stapels-audacious-academic-fraud.html

bibliography

[20] Dan Bogdanov, Sven Laur and Jan Willemson. ‘Sharemind: A Framework

for Fast Privacy-Preserving Computations’. en. In: Computer Security -
ESORICS 2008. Ed. by Sushil Jajodia and Javier Lopez. Lecture Notes

in Computer Science. Berlin, Heidelberg: Springer, 2008, pp. 192–206.

isbn: 978-3-540-88313-5. doi: 10.1007/978-3-540-88313-5_13.

[21] Dan Bogdanov, Riivo Talviste and Jan Willemson. ‘Deploying Secure

Multi-Party Computation for Financial Data Analysis’. en. In: Financial
Cryptography and Data Security. Ed. by Angelos D. Keromytis. Lecture

Notes in Computer Science. Berlin,Heidelberg: Springer, 2012, pp. 57–64.

isbn: 978-3-642-32946-3. doi: 10.1007/978-3-642-32946-3_5.

[22] Dan Bogdanov et al. ‘High-performance secure multi-party computation

for data mining applications’. en. In: International Journal of Information
Security 11.6 (Nov. 2012), pp. 403–418. issn: 1615-5270. doi: 10.1007
/s10207-012-0177-2. url: https://doi.org/10.1007/s10207-
012-0177-2 (visited on 26/04/2023).

[23] Dan Bogdanov et al. ‘Rmind: A Tool for Cryptographically Secure Statist-

ical Analysis’. In: IEEE Transactions on Dependable and Secure Computing
15.3 (May 2018). Conference Name: IEEE Transactions on Dependable

and Secure Computing, pp. 481–495. issn: 1941-0018. doi: 10.1109
/TDSC.2016.2587623.

[24] Christoph Bösch. ‘Privacy Engineering and Privacy Enhancing Techno-

logies: S5 - Secure Multiparty Computation (MPC + Yao)’. Lecture Notes.

Ulm University, 2021.

[25] Ferdinand Brasser et al. ‘Software grand exposure: SGX cache attacks

are practical’. In: Proceedings of the 11th USENIX Conference on Offensive
Technologies. WOOT’17. USA: USENIX Association, Aug. 2017, p. 11.

(Visited on 08/03/2023).

[26] Jo Van Bulck et al. ‘Foreshadow: Extracting the Keys to the Intel SGX

Kingdom with Transient Out-of-Order Execution’. en. In: 2018, p. 991.

isbn: 978-1-939133-04-5. url: https://www.usenix.org/co
nference/usenixsecurity18/presentation/bulck (visited on

03/04/2023).

[27] Ran Canetti. ‘Security and Composition of Multiparty Cryptographic

Protocols’. en. In: Journal of Cryptology 13.1 (Jan. 2000), pp. 143–202.

issn: 1432-1378. doi: 10.1007/s001459910006. url: https://do
i.org/10.1007/s001459910006 (visited on 15/11/2022).

[28] Yue Chen et al. Downgrade Attack on TrustZone. arXiv:1707.05082 [cs].
July 2017. doi: 10.48550/arXiv.1707.05082. url: http://arxi
v.org/abs/1707.05082 (visited on 19/04/2023).

[29] Koji Chida et al. ‘Implementation and evaluation of an efficient secure

computation system using ‘R’ for healthcare statistics’. In: Journal of
the American Medical Informatics Association 21.e2 (Oct. 2014), e326–

e331. issn: 1067-5027. doi: 10.1136/amiajnl-2014-002631. url:
https://doi.org/10.1136/amiajnl-2014-002631 (visited on

23/03/2023).

73

https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-642-32946-3_5
https://doi.org/10.1007/s10207-012-0177-2
https://doi.org/10.1007/s10207-012-0177-2
https://doi.org/10.1007/s10207-012-0177-2
https://doi.org/10.1007/s10207-012-0177-2
https://doi.org/10.1109/TDSC.2016.2587623
https://doi.org/10.1109/TDSC.2016.2587623
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://doi.org/10.48550/arXiv.1707.05082
http://arxiv.org/abs/1707.05082
http://arxiv.org/abs/1707.05082
https://doi.org/10.1136/amiajnl-2014-002631
https://doi.org/10.1136/amiajnl-2014-002631

bibliography

[30] Joseph I. Choi and Kevin R. B. Butler. ‘Secure Multiparty Computation

and Trusted Hardware: Examining Adoption Challenges and Oppor-

tunities’. en. In: Security and Communication Networks 2019 (Apr. 2019).
Publisher: Hindawi, e1368905. issn: 1939-0114. doi: 10.1155/2019
/1368905. url: https://www.hindawi.com/journals/scn/201
9/1368905/ (visited on 23/03/2023).

[31] Benny Chor et al. ‘Verifiable secret sharing and achieving simultaneity

in the presence of faults’. In: 26th Annual Symposium on Foundations of
Computer Science (sfcs 1985). ISSN: 0272-5428. Oct. 1985, pp. 383–395.

doi: 10.1109/SFCS.1985.64.

[32] Richard Erwin Cleve. ‘Limits on the security of coin flips when half

the processors are faulty’. In: Proceedings of the eighteenth annual ACM
symposium on Theory of computing. STOC ’86. New York, NY, USA: As-

sociation for Computing Machinery, Nov. 1986, pp. 364–369. isbn:

978-0-89791-193-1. doi: 10.1145/12130.12168. url: https://do
i.org/10.1145/12130.12168 (visited on 17/11/2022).

[33] Chris Clifton et al. ‘Tools for privacy preserving distributed data mining’.

In: ACM SIGKDD Explorations Newsletter 4.2 (Dec. 2002), pp. 28–34.

issn: 1931-0145. doi: 10.1145/772862.772867. url: https://do
i.org/10.1145/772862.772867 (visited on 20/03/2023).

[34] Victor Costan and Srinivas Devadas. Intel SGX Explained. Report Num-

ber: 086. 2016. url: https://eprint.iacr.org/2016/086 (visited
on 08/11/2022).

[35] Victor Costan, Ilia Lebedev and Srinivas Devadas. ‘Sanctum: minimal

hardware extensions for strong software isolation’. In: Proceedings of the
25th USENIX Conference on Security Symposium. SEC’16. USA: USENIX

Association, Aug. 2016, pp. 857–874. isbn: 978-1-931971-32-4. (Visited

on 07/12/2022).

[36] N. a. C. Cressie and H. J. Whitford. ‘How to Use the Two Sample t-Test’.

en. In: Biometrical Journal 28.2 (1986), pp. 131–148. issn: 1521-4036.
doi: 10.1002/bimj.4710280202. url: https://onlinelibrar
y.wiley.com/doi/abs/10.1002/bimj.4710280202 (visited on

11/04/2023).

[37] Ivan Damgård and Jesper Buus Nielsen. ‘Scalable and Unconditionally Se-

cure Multiparty Computation’. en. In: Advances in Cryptology - CRYPTO
2007. Ed. by Alfred Menezes. Lecture Notes in Computer Science. Ber-

lin, Heidelberg: Springer, 2007, pp. 572–590. isbn: 978-3-540-74143-5.

doi: 10.1007/978-3-540-74143-5_32.

[38] Ed Dawson and Diane Donovan. ‘The breadth of Shamir’s secret-sharing

scheme’. en. In: Computers & Security 13.1 (Feb. 1994), pp. 69–78. issn:
0167-4048. doi: 10.1016/0167-4048(94)90097-3. url: https:
//www.sciencedirect.com/science/article/pii/016740489
4900973 (visited on 22/11/2022).

[39] Daniel Demmler, Thomas Schneider andMichael Zohner. ‘ABY-A frame-

work for efficient mixed-protocol secure two-party computation.’ In:

NDSS. 2015.

74

https://doi.org/10.1155/2019/1368905
https://doi.org/10.1155/2019/1368905
https://www.hindawi.com/journals/scn/2019/1368905/
https://www.hindawi.com/journals/scn/2019/1368905/
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1145/12130.12168
https://doi.org/10.1145/12130.12168
https://doi.org/10.1145/12130.12168
https://doi.org/10.1145/772862.772867
https://doi.org/10.1145/772862.772867
https://doi.org/10.1145/772862.772867
https://eprint.iacr.org/2016/086
https://doi.org/10.1002/bimj.4710280202
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.4710280202
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.4710280202
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1016/0167-4048(94)90097-3
https://www.sciencedirect.com/science/article/pii/0167404894900973
https://www.sciencedirect.com/science/article/pii/0167404894900973
https://www.sciencedirect.com/science/article/pii/0167404894900973

bibliography

[40] Cynthia Dwork. ‘Differential Privacy: A Survey of Results’. en. In: Theory
and Applications of Models of Computation. Ed. by Manindra Agrawal et al.

Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2008,

pp. 1–19. isbn: 978-3-540-79228-4. doi: 10.1007/978-3-540-792
28-4_1.

[41] Khaled El Emam et al. ‘A Protocol for the Secure Linking of Registries for

HPV Surveillance’. en. In: PLOS ONE 7.7 (July 2012). Publisher: Public

Library of Science, e39915. issn: 1932-6203. doi: 10.1371/journ
al.pone.0039915. url: https://journals.plos.org/ploso
ne/article?id=10.1371/journal.pone.0039915 (visited on

23/03/2023).

[42] Benjamin Erb et al. Emerging Privacy Issues in Times of Open Science.
en-us. June 2021. doi: 10.31234/osf.io/u236e. url: https://ps
yarxiv.com/u236e/ (visited on 18/10/2022).

[43] David Evans, Vladimir Kolesnikov andMike Rosulek. ‘A Pragmatic Intro-

duction to Secure Multi-Party Computation’. In: Foundations and Trends
in Privacy and Security 2.2-3 (Dec. 2018), pp. 70–246. issn: 2474-1558.
doi: 10.1561/3300000019. url: https://doi.org/10.1561/33
00000019 (visited on 02/11/2022).

[44] Shufan Fei et al. ‘Security Vulnerabilities of SGX and Countermeasures:

A Survey’. In: ACM Computing Surveys 54.6 (July 2021), 126:1–126:36.
issn: 0360-0300. doi: 10.1145/3456631. url: https://doi.org
/10.1145/3456631 (visited on 08/03/2023).

[45] Edward W. Felten. ‘Understanding trusted computing: will its benefits

outweigh its drawbacks?’ In: IEEE Security & Privacy 1.3 (May 2003).

Conference Name: IEEE Security & Privacy, pp. 60–62. issn: 1558-4046.

doi: 10.1109/MSECP.2003.1203224.

[46] Oded Goldreich, Silvio Micali and Avi Wigderson. ‘How to play ANY

mental game’. In: Proceedings of the nineteenth annual ACM symposium
on Theory of computing. STOC ’87. New York, NY, USA: Association for

Computing Machinery, Jan. 1987, pp. 218–229. isbn: 978-0-89791-221-

1. doi: 10.1145/28395.28420. url: https://doi.org/10.1145
/28395.28420 (visited on 10/11/2022).

[47] Mario Gollwitzer et al. ‘Management und Bereitstellung von Forschungs-

daten in der Psychologie: Überarbeitung der DGPs-Empfehlungen’. In:

Psychologische Rundschau 72.2 (Apr. 2021). Publisher: Hogrefe Verlag,

pp. 132–146. issn: 0033-3042. doi: 10.1026/0033-3042/a000514.
url: https://econtent.hogrefe.com/doi/full/10.1026/003
3-3042/a000514 (visited on 19/04/2023).

[48] DebayanGupta et al. ‘Using Intel Software Guard Extensions for Efficient

Two-Party Secure Function Evaluation’. en. In: Financial Cryptography
and Data Security. Ed. by Jeremy Clark et al. Lecture Notes in Computer

Science. Berlin, Heidelberg: Springer, 2016, pp. 302–318. isbn: 978-3-

662-53357-4. doi: 10.1007/978-3-662-53357-4_20.

75

https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1371/journal.pone.0039915
https://doi.org/10.1371/journal.pone.0039915
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0039915
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0039915
https://doi.org/10.31234/osf.io/u236e
https://psyarxiv.com/u236e/
https://psyarxiv.com/u236e/
https://doi.org/10.1561/3300000019
https://doi.org/10.1561/3300000019
https://doi.org/10.1561/3300000019
https://doi.org/10.1145/3456631
https://doi.org/10.1145/3456631
https://doi.org/10.1145/3456631
https://doi.org/10.1109/MSECP.2003.1203224
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1026/0033-3042/a000514
https://econtent.hogrefe.com/doi/full/10.1026/0033-3042/a000514
https://econtent.hogrefe.com/doi/full/10.1026/0033-3042/a000514
https://doi.org/10.1007/978-3-662-53357-4_20

bibliography

[49] John L. Gustafson. ‘Moore’s Law’. en. In: Encyclopedia of Parallel Comput-
ing. Ed. by David Padua. Boston, MA: Springer US, 2011, pp. 1177–1184.

isbn: 978-0-387-09766-4. doi: 10.1007/978-0-387-09766-4_81.
url: https://doi.org/10.1007/978- 0- 387- 09766- 4_81
(visited on 23/03/2023).

[50] Marcella Hastings et al. ‘SoK: General Purpose Compilers for Secure

Multi-Party Computation’. In: 2019 IEEE Symposium on Security and
Privacy (SP). ISSN: 2375-1207. May 2019, pp. 1220–1237. doi: 10.110
9/SP.2019.00028.

[51] Megan L. Head et al. ‘The Extent and Consequences of P-Hacking in

Science’. en. In: PLOS Biology 13.3 (Mar. 2015). Publisher: Public Library

of Science, e1002106. issn: 1545-7885. doi: 10.1371/journal.p
bio.1002106. url: https://journals.plos.org/plosbiolo
gy/article?id=10.1371/journal.pbio.1002106 (visited on

18/04/2023).

[52] Siam Hussain et al. ‘TinyGarble2: Smart, Efficient, and Scalable Yao’s

Garble Circuit’. In: Proceedings of the 2020 Workshop on Privacy-Preserving
Machine Learning in Practice. PPMLP’20. New York, NY, USA: Associ-

ation for Computing Machinery, Nov. 2020, pp. 65–67. isbn: 978-1-

4503-8088-1. doi: 10.1145/3411501.3419433. url: https://doi
.org/10.1145/3411501.3419433 (visited on 21/03/2023).

[53] Intel Corporation. Intel® Software Guard Extensions (Intel® SGX). Tech.
rep. Reference Number: 332680-002. June 2015. url: https://www.i
ntel.com/content/dam/develop/external/us/en/documents
/332680-002-621824.pdf.

[54] Intel® 64 and IA-32 Architectures Software Developer Manuals. en. url:
https://www.intel.com/content/www/us/en/developer/art
icles/technical/intel-sdm.html (visited on 02/03/2023).

[55] Intel® Software Guard Extensions. en. url: https://software.inte
l.com/sgx (visited on 08/12/2022).

[56] International Statistical Institute. ‘Declaration on professional ethics’. In:

International Statistical Institute Voorburg, 1985. url: https://www.i
si-web.org/isi-declaration-professional-ethics-1985.

[57] John P. A. Ioannidis. ‘Why Most Published Research Findings Are False’.

en. In: PLOS Medicine 2.8 (Aug. 2005). Publisher: Public Library of Sci-
ence, e124. issn: 1549-1676. doi: 10.1371/journal.pmed.0020124.
url: https://journals.plos.org/plosmedicine/article?id
=10.1371/journal.pmed.0020124 (visited on 18/04/2023).

[58] Ayman Jarrous and Benny Pinkas. ‘Canon-MPC, A System for Casual

Non-Interactive Secure Multi-Party Computation Using Native Client’.

In: Proceedings of the 12th ACM workshop on Workshop on privacy in
the electronic society. WPES ’13. New York, NY, USA: Association for

ComputingMachinery,Nov. 2013, pp. 155–166. isbn: 978-1-4503-2485-

4. doi: 10.1145/2517840.2517845. url: https://doi.org/10.1
145/2517840.2517845 (visited on 09/03/2023).

76

https://doi.org/10.1007/978-0-387-09766-4_81
https://doi.org/10.1007/978-0-387-09766-4_81
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1371/journal.pbio.1002106
https://doi.org/10.1371/journal.pbio.1002106
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002106
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002106
https://doi.org/10.1145/3411501.3419433
https://doi.org/10.1145/3411501.3419433
https://doi.org/10.1145/3411501.3419433
https://www.intel.com/content/dam/develop/external/us/en/documents/332680-002-621824.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/332680-002-621824.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/332680-002-621824.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://software.intel.com/sgx
https://software.intel.com/sgx
https://www.isi-web.org/isi-declaration-professional-ethics-1985
https://www.isi-web.org/isi-declaration-professional-ethics-1985
https://doi.org/10.1371/journal.pmed.0020124
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020124
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020124
https://doi.org/10.1145/2517840.2517845
https://doi.org/10.1145/2517840.2517845
https://doi.org/10.1145/2517840.2517845

bibliography

[59] Liina Kamm et al. ‘A new way to protect privacy in large-scale genome-

wide association studies’. In: Bioinformatics 29.7 (Apr. 2013), pp. 886–893.
issn: 1367-4803. doi: 10.1093/bioinformatics/btt066. url:
https://doi.org/10.1093/bioinformatics/btt066 (visited on
23/03/2023).

[60] Ryan Karl et al. ‘Developing non-interactive MPC with trusted hardware

for enhanced security’. en. In: International Journal of Information Security
21.4 (Aug. 2022), pp. 777–797. issn: 1615-5270. doi: 10.1007/s1020
7-022-00583-w. url: https://doi.org/10.1007/s10207-022-
00583-w (visited on 27/03/2023).

[61] Marcel Keller. ‘MP-SPDZ: A Versatile Framework for Multi-Party Com-

putation’. In: Proceedings of the 2020 ACMSIGSACConference on Computer
and Communications Security. CCS ’20. New York, NY, USA: Association

forComputingMachinery,Nov. 2020, pp. 1575–1590. isbn: 978-1-4503-

7089-9. doi: 10.1145/3372297.3417872. url: https://doi.org
/10.1145/3372297.3417872 (visited on 31/01/2023).

[62] Norbert L. Kerr. ‘HARKing: Hypothesizing After the Results are Known’.

en. In: Personality and Social Psychology Review 2.3 (Aug. 1998). Publisher:

SAGE Publications Inc, pp. 196–217. issn: 1088-8683. doi: 10.1207
/s15327957pspr0203_4. url: https://doi.org/10.1207/s153
27957pspr0203_4 (visited on 18/04/2023).

[63] Brian Knott et al. ‘CrypTen: Secure Multi-Party Computation Meets

Machine Learning’. In: Advances in Neural Information Processing Systems.
Vol. 34. Curran Associates, Inc., 2021, pp. 4961–4973. url: https://p
roceedings.neurips.cc/paper/2021/hash/2754518221cfbc8
d25c13a06a4cb8421-Abstract.html (visited on 20/04/2023).

[64] Toshiki Kobayashi et al. ‘SAFES: Sand-boxed Architecture for Frequent

Environment Self-measurement’. In: Proceedings of the 3rd Workshop on
System Software for Trusted Execution. SysTEX ’18. New York, NY, USA:

Association for Computing Machinery, Jan. 2018, pp. 37–41. isbn: 978-

1-4503-5998-6. doi: 10.1145/3268935.3268939. url: https://d
oi.org/10.1145/3268935.3268939 (visited on 02/03/2023).

[65] Kubilay Ahmet Küçük et al. ‘Exploring the use of Intel SGX for Secure

Many-Party Applications’. In: Proceedings of the 1st Workshop on Sys-
tem Software for Trusted Execution. SysTEX ’16. New York, NY, USA:

Association for Computing Machinery, Dec. 2016, pp. 1–6. isbn: 978-1-

4503-4670-2. doi: 10.1145/3007788.3007793. url: https://doi
.org/10.1145/3007788.3007793 (visited on 23/10/2022).

[66] Andrei Lapets et al. ‘Accessible Privacy-Preserving Web-Based Data Ana-

lysis for Assessing and Addressing Economic Inequalities’. In: Proceedings
of the 1st ACM SIGCAS Conference on Computing and Sustainable Soci-
eties. COMPASS ’18. New York, NY, USA: Association for Computing

Machinery, June 2018, pp. 1–5. isbn: 978-1-4503-5816-3. doi: 10.114
5/3209811.3212701. url: https://doi.org/10.1145/3209811
.3212701 (visited on 20/03/2023).

77

https://doi.org/10.1093/bioinformatics/btt066
https://doi.org/10.1093/bioinformatics/btt066
https://doi.org/10.1007/s10207-022-00583-w
https://doi.org/10.1007/s10207-022-00583-w
https://doi.org/10.1007/s10207-022-00583-w
https://doi.org/10.1007/s10207-022-00583-w
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1207/s15327957pspr0203_4
https://doi.org/10.1207/s15327957pspr0203_4
https://doi.org/10.1207/s15327957pspr0203_4
https://doi.org/10.1207/s15327957pspr0203_4
https://proceedings.neurips.cc/paper/2021/hash/2754518221cfbc8d25c13a06a4cb8421-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2754518221cfbc8d25c13a06a4cb8421-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2754518221cfbc8d25c13a06a4cb8421-Abstract.html
https://doi.org/10.1145/3268935.3268939
https://doi.org/10.1145/3268935.3268939
https://doi.org/10.1145/3268935.3268939
https://doi.org/10.1145/3007788.3007793
https://doi.org/10.1145/3007788.3007793
https://doi.org/10.1145/3007788.3007793
https://doi.org/10.1145/3209811.3212701
https://doi.org/10.1145/3209811.3212701
https://doi.org/10.1145/3209811.3212701
https://doi.org/10.1145/3209811.3212701

bibliography

[67] Andrei Lapets et al. Role-Based Ecosystem for Design, Development, and
Deployment of Secure Multi-Party Data Analytics Applications. Report
Number: 803. 2017. url: https://eprint.iacr.org/2017/803
(visited on 08/03/2023).

[68] Andrei Lapets et al. ‘Secure MPC for Analytics as a Web Application’.

In: 2016 IEEE Cybersecurity Development (SecDev). Nov. 2016, pp. 73–74.
doi: 10.1109/SecDev.2016.027.

[69] Andrei Lapets et al. Secure multi-party computation for analytics deployed
as a lightweight web application. Technical Report. Accepted: 2017-04-
26T18:43:47Z. Computer Science Department, Boston University, July

2016. url: https://open.bu.edu/handle/2144/21786 (visited on
20/03/2023).

[70] Andrei Lapets et al.Web-based multi-party computation with application to
anonymous aggregate compensation analytics. Technical Report. Accepted:
2017-04-26T18:43:32Z. Computer Science Department, Boston Univer-

sity, Aug. 2015. url: https://open.bu.edu/handle/2144/21773
(visited on 17/11/2022).

[71] LatticeX-Foundation/Rosetta. original-date: 2020-04-08T14:25:50Z. Feb.
2023. url: https://github.com/LatticeX-Foundation/Rosett
a (visited on 21/03/2023).

[72] John Launchbury et al. ‘Efficient lookup-table protocol in secure multi-

party computation’. In: Proceedings of the 17th ACM SIGPLAN inter-
national conference on Functional programming. ICFP ’12. New York,

NY, USA: Association for Computing Machinery, Sept. 2012, pp. 189–

200. isbn: 978-1-4503-1054-3. doi: 10.1145/2364527.2364556.
url: https://doi.org/10.1145/2364527.2364556 (visited on

21/03/2023).

[73] Dayeol Lee et al. ‘Keystone: an open framework for architecting trusted

execution environments’. In: Proceedings of the Fifteenth European Confer-
ence on Computer Systems. EuroSys ’20. New York, NY, USA: Association

for Computing Machinery, Apr. 2020, pp. 1–16. isbn: 978-1-4503-6882-

7. doi: 10.1145/3342195.3387532. url: https://doi.org/10.1
145/3342195.3387532 (visited on 07/02/2023).

[74] Mengyuan Li et al. ‘CIPHERLEAKS: Breaking Constant-time Crypto-

graphy on AMD SEV via the Ciphertext Side Channel’. en. In: 2021,

pp. 717–732. isbn: 978-1-939133-24-3. url: https://www.usenix
.org/conference/usenixsecurity21/presentation/li-meng
yuan (visited on 19/04/2023).

[75] David Lie et al. ‘Architectural support for copy and tamper resistant

software’. In: ACM SIGPLAN Notices 35.11 (Nov. 2000), pp. 168–177.
issn: 0362-1340. doi: 10.1145/356989.357005. url: https://do
i.org/10.1145/356989.357005 (visited on 07/02/2023).

[76] Yehuda Lindell. Secure Multiparty Computation (MPC). Report Number:

300. 2020. url: https://eprint.iacr.org/2020/300 (visited on
01/11/2022).

78

https://eprint.iacr.org/2017/803
https://doi.org/10.1109/SecDev.2016.027
https://open.bu.edu/handle/2144/21786
https://open.bu.edu/handle/2144/21773
https://github.com/LatticeX-Foundation/Rosetta
https://github.com/LatticeX-Foundation/Rosetta
https://doi.org/10.1145/2364527.2364556
https://doi.org/10.1145/2364527.2364556
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3342195.3387532
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan
https://doi.org/10.1145/356989.357005
https://doi.org/10.1145/356989.357005
https://doi.org/10.1145/356989.357005
https://eprint.iacr.org/2020/300

bibliography

[77] MoxieMarlinspike. Technology preview: Private contact discovery for Signal.
en. Sept. 2017. url: https://signal.org/blog/private-contac
t-discovery/ (visited on 03/04/2023).

[78] AndrewMartin. ‘The ten-page introduction to Trusted Computing’. Eng-

lish. In: (2008). Edition: Author’s Original Version Number: Author’s

Original. url: https://ora.ox.ac.uk/objects/uuid:a4a7ae67
-7b2a-4516-801d-9379d613bab4 (visited on 02/03/2023).

[79] Frank McKeen et al. ‘Innovative instructions and software model for

isolated execution’. In: Proceedings of the 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy. HASP ’13.

New York, NY, USA: Association for Computing Machinery, June 2013,

p. 1. isbn: 978-1-4503-2118-1. doi: 10.1145/2487726.2488368.
url: https://doi.org/10.1145/2487726.2488368 (visited on

06/12/2022).

[80] Frank McKeen et al. ‘Intel® Software Guard Extensions (Intel® SGX)

Support for Dynamic Memory Management Inside an Enclave’. In: Pro-
ceedings of the Hardware and Architectural Support for Security and Privacy
2016. HASP 2016. New York, NY, USA: Association for Computing Ma-

chinery, June 2016, pp. 1–9. isbn: 978-1-4503-4769-3. doi: 10.1145
/2948618.2954331. url: https://dl.acm.org/doi/10.1145/2
948618.2954331 (visited on 11/04/2023).

[81] DominikMeißner et al. ‘PeQES: a platform for privacy-enhanced quantit-

ative empirical studies’. In: Proceedings of the 36th Annual ACMSymposium
on Applied Computing. SAC ’21. NewYork,NY,USA: Association forCom-

putingMachinery, Mar. 2021, pp. 1226–1234. isbn: 978-1-4503-8104-8.

doi: 10.1145/3412841.3441997. url: https://doi.org/10.11
45/3412841.3441997 (visited on 19/10/2022).

[82] Xinyuan Miao et al. Lejacon: A Lightweight and Efficient Approach to Java
Confidential Computing on SGX. en. url: https://ddst.sjtu.edu
.cn/Management/Upload/[News]a845acae286b470bb55013c1b
5e425e2/20232101456536725sSV.pdf.

[83] Moose. original-date: 2020-04-22T12:16:15Z. Mar. 2023. url: https:
//github.com/tf-encrypted/moose (visited on 21/03/2023).

[84] Multiparty.orgDevelopmentTeam. JavaScript Implementation of Federated
Functionalities. original-date: 2017-05-31T21:23:20Z. May 2018. url:

https://github.com/multiparty/jiff (visited on 08/03/2023).

[85] Multiparty.org Development Team. Secure MPC Protocol for (Sample)
Standard Deviation. original-date: 2017-05-31T21:23:20Z. Nov. 2020.
url: https://github.com/multiparty/jiff/blob/8ea565d3d
0becde8f71243fb9daea6ef0ba9bb7e/demos/standard-deviat
ion/standdevprotocol.pdf (visited on 11/04/2023).

[86] Arvind Narayanan and Vitaly Shmatikov. ‘Robust De-anonymization of

Large Sparse Datasets’. In: 2008 IEEE Symposium on Security and Privacy
(sp 2008). ISSN: 2375-1207. May 2008, pp. 111–125. doi: 10.1109/SP.2
008.33.

79

https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://ora.ox.ac.uk/objects/uuid:a4a7ae67-7b2a-4516-801d-9379d613bab4
https://ora.ox.ac.uk/objects/uuid:a4a7ae67-7b2a-4516-801d-9379d613bab4
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2948618.2954331
https://doi.org/10.1145/2948618.2954331
https://dl.acm.org/doi/10.1145/2948618.2954331
https://dl.acm.org/doi/10.1145/2948618.2954331
https://doi.org/10.1145/3412841.3441997
https://doi.org/10.1145/3412841.3441997
https://doi.org/10.1145/3412841.3441997
https://ddst.sjtu.edu.cn/Management/Upload/[News]a845acae286b470bb55013c1b5e425e2/20232101456536725sSV.pdf
https://ddst.sjtu.edu.cn/Management/Upload/[News]a845acae286b470bb55013c1b5e425e2/20232101456536725sSV.pdf
https://ddst.sjtu.edu.cn/Management/Upload/[News]a845acae286b470bb55013c1b5e425e2/20232101456536725sSV.pdf
https://github.com/tf-encrypted/moose
https://github.com/tf-encrypted/moose
https://github.com/multiparty/jiff
https://github.com/multiparty/jiff/blob/8ea565d3d0becde8f71243fb9daea6ef0ba9bb7e/demos/standard-deviation/standdevprotocol.pdf
https://github.com/multiparty/jiff/blob/8ea565d3d0becde8f71243fb9daea6ef0ba9bb7e/demos/standard-deviation/standdevprotocol.pdf
https://github.com/multiparty/jiff/blob/8ea565d3d0becde8f71243fb9daea6ef0ba9bb7e/demos/standard-deviation/standdevprotocol.pdf
https://doi.org/10.1109/SP.2008.33
https://doi.org/10.1109/SP.2008.33

bibliography

[87] Arvind Narayanan et al. ‘On the Feasibility of Internet-Scale Author

Identification’. In: 2012 IEEE Symposium on Security and Privacy. ISSN:

2375-1207. May 2012, pp. 300–314. doi: 10.1109/SP.2012.46.

[88] Jakob Nielsen. Nielsen’s Law of Internet Bandwidth. en. Jan. 2023. url:
https://www.nngroup.com/articles/law- of- bandwidth/
(visited on 23/03/2023).

[89] Jakob Nielsen. Response Time Limits. en. Jan. 1993. url: https://www
.nngroup.com/articles/response-times-3-important-limi
ts/ (visited on 26/04/2023).

[90] Open Science Collaboration. ‘Estimating the reproducibility of psycho-

logical science’. In: Science 349.6251 (Aug. 2015). Publisher: American

Association for the Advancement of Science, aac4716. doi: 10.1126/s
cience.aac4716. url: https://www.science.org/doi/10.112
6/science.aac4716 (visited on 18/04/2023).

[91] Bernardo Portela et al. ‘Secure Multiparty Computation from SGX’. In:

Financial Cryptography and Data Security 2017 (Apr. 2017). Publisher:
International Financial Cryptography Association.

[92] Tal Rabin and Michael Ben-Or. ‘Verifiable secret sharing and multiparty

protocols with honest majority’. In: Proceedings of the twenty-first annual
ACM symposium on Theory of computing. STOC ’89. New York, NY, USA:

Association for Computing Machinery, Feb. 1989, pp. 73–85. isbn: 978-

0-89791-307-2. doi: 10.1145/73007.73014. url: https://dl.ac
m.org/doi/10.1145/73007.73014 (visited on 27/03/2023).

[93] Devin Reich et al. ‘Privacy-Preserving Classification of Personal Text

Messages with Secure Multi-Party Computation’. In: Advances in Neural
Information Processing Systems. Vol. 32. Curran Associates, Inc., 2019.

url: https://proceedings.neurips.cc/paper/2019/hash/a
501bebf79d570651ff601788ea9d16d-Abstract.html (visited on
20/04/2023).

[94] Amanda Resende et al. ‘Fast Privacy-Preserving Text Classification Based

on SecureMultiparty Computation’. In: IEEE Transactions on Information
Forensics and Security 17 (2022). Conference Name: IEEE Transactions

on Information Forensics and Security, pp. 428–442. issn: 1556-6021.

doi: 10.1109/TIFS.2022.3144007.

[95] Peter Rindal and Mike Rosulek. Faster Malicious 2-party Secure Computa-
tion with Online/Offline Dual Execution. Report Number: 632. 2016. url:

https://eprint.iacr.org/2016/632 (visited on 21/03/2023).

[96] Rising to the Challenge — Data Security with Intel Confidential Computing.
en. Section: Security. Jan. 2022. url: https://community.intel.co
m/t5/Blogs/Products-and-Solutions/Security/Rising-to-
the-Challenge-Data-Security-with-Intel-Confidential/p
ost/1353141 (visited on 02/03/2023).

80

https://doi.org/10.1109/SP.2012.46
https://www.nngroup.com/articles/law-of-bandwidth/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1126/science.aac4716
https://www.science.org/doi/10.1126/science.aac4716
https://www.science.org/doi/10.1126/science.aac4716
https://doi.org/10.1145/73007.73014
https://dl.acm.org/doi/10.1145/73007.73014
https://dl.acm.org/doi/10.1145/73007.73014
https://proceedings.neurips.cc/paper/2019/hash/a501bebf79d570651ff601788ea9d16d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/a501bebf79d570651ff601788ea9d16d-Abstract.html
https://doi.org/10.1109/TIFS.2022.3144007
https://eprint.iacr.org/2016/632
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141

bibliography

[97] Luc Rocher, Julien M. Hendrickx and Yves-Alexandre de Montjoye. ‘Es-

timating the success of re-identifications in incomplete datasets using

generative models’. en. In:Nature Communications 10.1 (July 2019). Num-

ber: 1 Publisher: Nature Publishing Group, p. 3069. issn: 2041-1723.

doi: 10.1038/s41467-019-10933-3. url: https://www.nature
.com/articles/s41467-019-10933-3/ (visited on 19/04/2023).

[98] David Cerezo Sánchez. Raziel: Private and Verifiable Smart Contracts on
Blockchains. Report Number: 878. 2017. url: https://eprint.iacr
.org/2017/878 (visited on 21/03/2023).

[99] SCALE and MAMBA. original-date: 2018-05-02T10:40:57Z. Mar. 2023.

url: https://github.com/KULeuven- COSIC/SCALE- MAMBA
(visited on 21/03/2023).

[100] Berry Schoenmakers.MPyC Multiparty Computation in Python. original-
date: 2018-04-19T05:43:08Z. Mar. 2023. url: https://github.com
/lschoe/mpyc (visited on 16/03/2023).

[101] Berry Schoenmakers. ‘MPyC—Python package for secure multiparty

computation’. In:Workshop on the Theory and Practice ofMPC. https://github.
com/lschoe/mpyc. 2018.

[102] Felix Schuster et al. ‘VC3: Trustworthy Data Analytics in the Cloud Using

SGX’. In: 2015 IEEE Symposium on Security and Privacy. ISSN: 2375-1207.

May 2015, pp. 38–54. doi: 10.1109/SP.2015.10.

[103] Sacha Servan-Schreiber et al. STAR: Statistical Tests with Auditable Results.
arXiv:1901.10875 [cs, stat]. Oct. 2019. doi: 10.48550/arXiv.1901
.10875. url: http://arxiv.org/abs/1901.10875 (visited on

20/10/2022).

[104] Adi Shamir. ‘How to share a secret’. In: Communications of the ACM 22.11

(Nov. 1979), pp. 612–613. issn: 0001-0782. doi: 10.1145/359168.3
59176. url: https://doi.org/10.1145/359168.359176 (visited
on 17/11/2022).

[105] Fahad Shaon et al. ‘SGX-BigMatrix: A Practical Encrypted Data Analytic

Framework With Trusted Processors’. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’17.
New York, NY, USA: Association for Computing Machinery, Oct. 2017,

pp. 1211–1228. isbn: 978-1-4503-4946-8. doi: 10.1145/3133956
.3134095. url: https://doi.org/10.1145/3133956.3134095
(visited on 23/10/2022).

[106] Patrick E. Shrout and Joseph L. Rodgers. ‘Psychology, Science, and Know-

ledge Construction: Broadening Perspectives from the Replication Crisis’.

eng. In: Annual Review of Psychology 69 (Jan. 2018), pp. 487–510. issn:
1545-2085. doi: 10.1146/annurev-psych-122216-011845.

[107] Joseph P. Simmons, Leif D. Nelson and Uri Simonsohn. ‘False-Positive

Psychology: Undisclosed Flexibility in Data Collection and Analysis Al-

lows Presenting Anything as Significant’. en. In: Psychological Science
22.11 (Nov. 2011). Publisher: SAGE Publications Inc, pp. 1359–1366.

issn: 0956-7976. doi: 10.1177/0956797611417632. url: https:
//doi.org/10.1177/0956797611417632 (visited on 18/04/2023).

81

https://doi.org/10.1038/s41467-019-10933-3
https://www.nature.com/articles/s41467-019-10933-3/
https://www.nature.com/articles/s41467-019-10933-3/
https://eprint.iacr.org/2017/878
https://eprint.iacr.org/2017/878
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/lschoe/mpyc
https://github.com/lschoe/mpyc
https://doi.org/10.1109/SP.2015.10
https://doi.org/10.48550/arXiv.1901.10875
https://doi.org/10.48550/arXiv.1901.10875
http://arxiv.org/abs/1901.10875
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/3133956.3134095
https://doi.org/10.1145/3133956.3134095
https://doi.org/10.1145/3133956.3134095
https://doi.org/10.1146/annurev-psych-122216-011845
https://doi.org/10.1177/0956797611417632
https://doi.org/10.1177/0956797611417632
https://doi.org/10.1177/0956797611417632

bibliography

[108] EbrahimM. Songhori et al. ‘TinyGarble: Highly Compressed and Scalable

Sequential Garbled Circuits’. In: 2015 IEEE Symposium on Security and
Privacy. ISSN: 2375-1207. May 2015, pp. 411–428. doi: 10.1109/SP.2
015.32.

[109] Richard Stallman. ‘Can you trust your computer?’ In: NewsForge: The
Online Newspaper for Linux and Open Source October (2002).

[110] Douglas R. Stinson. ‘An Explication of Secret Sharing Schemes’. en. In:

Designs, Codes and Cryptography 2.4 (Dec. 1992), pp. 357–390. issn: 1573-
7586. doi: 10.1007/BF00125203. url: https://doi.org/10.100
7/BF00125203 (visited on 29/11/2022).

[111] Latanya Sweeney. ‘k-Anonymity: A Model for Protecting Privacy’. In: In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
10.05 (Oct. 2002). Publisher: World Scientific Publishing Co., pp. 557–

570. issn: 0218-4885. doi: 10.1142/S0218488502001648. url:
https://www.worldscientific.com/doi/abs/10.1142/S0218
488502001648 (visited on 19/04/2023).

[112] Trusted Computing Group. Trusted platform module library specification
(tpm2. 0). 2013. url: https://trustedcomputinggroup.org/reso
urce/tpm-library-specification/.

[113] Chia-Che Tsai, Donald E. Porter and Mona Vij. ‘Graphene-SGX: a prac-

tical library OS for unmodified applications on SGX’. In: Proceedings
of the 2017 USENIX Conference on Usenix Annual Technical Conference.
USENIX ATC ’17. USA: USENIX Association, July 2017, pp. 645–658.

isbn: 978-1-931971-38-6. (Visited on 16/01/2023).

[114] Chia-Che Tsai et al. ‘Cooperation and security isolation of library OSes

for multi-process applications’. In: Proceedings of the Ninth European
Conference on Computer Systems. EuroSys ’14. New York, NY, USA: As-

sociation for Computing Machinery, Apr. 2014, pp. 1–14. isbn: 978-1-

4503-2704-6. doi: 10.1145/2592798.2592812. url: https://doi
.org/10.1145/2592798.2592812 (visited on 16/03/2023).

[115] Stephan Van Schaik et al. SGAxe: How SGX fails in practice. 2020. url:
https://sgaxe.com/files/SGAxe.pdf.

[116] Edward Vul et al. ‘Puzzlingly High Correlations in fMRI Studies of Emo-

tion, Personality, and Social Cognition’. en. In: Perspectives on Psycholo-
gical Science 4.3 (May 2009). Publisher: SAGE Publications Inc, pp. 274–

290. issn: 1745-6916. doi: 10.1111/j.1745-6924.2009.01125.x.
url: https://doi.org/10.1111/j.1745-6924.2009.01125.x
(visited on 18/04/2023).

[117] Nicholas Wade. ‘Inquiry on Harvard Lab Threatens Ripple Effect’. en-US.

In: The New York Times (Aug. 2010). i ssn: 0362-4331. url: https:
//www.nytimes.com/2010/08/13/education/13harvard.html
(visited on 18/04/2023).

82

https://doi.org/10.1109/SP.2015.32
https://doi.org/10.1109/SP.2015.32
https://doi.org/10.1007/BF00125203
https://doi.org/10.1007/BF00125203
https://doi.org/10.1007/BF00125203
https://doi.org/10.1142/S0218488502001648
https://www.worldscientific.com/doi/abs/10.1142/S0218488502001648
https://www.worldscientific.com/doi/abs/10.1142/S0218488502001648
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://doi.org/10.1145/2592798.2592812
https://doi.org/10.1145/2592798.2592812
https://doi.org/10.1145/2592798.2592812
https://sgaxe.com/files/SGAxe.pdf
https://doi.org/10.1111/j.1745-6924.2009.01125.x
https://doi.org/10.1111/j.1745-6924.2009.01125.x
https://www.nytimes.com/2010/08/13/education/13harvard.html
https://www.nytimes.com/2010/08/13/education/13harvard.html

bibliography

[118] Huibo Wang et al. ‘Running Language Interpreters Inside SGX: A Light-

weight, Legacy-Compatible Script Code Hardening Approach’. In: Pro-
ceedings of the 2019 ACM Asia Conference on Computer and Communica-
tions Security. Asia CCS ’19. New York, NY, USA: Association for Com-

puting Machinery, July 2019, pp. 114–121. isbn: 978-1-4503-6752-3.

doi: 10.1145/3321705.3329848. url: https://doi.org/10.11
45/3321705.3329848 (visited on 07/10/2022).

[119] Xiao Wang, Alex J. Malozemoff and Jonathan Katz. Faster Secure Two-
Party Computation in the Single-Execution Setting. Report Number: 762.

2016. url: https://eprint.iacr.org/2016/762 (visited on

21/03/2023).

[120] Xiao Wang, Samuel Ranellucci and Jonathan Katz. Authenticated Garbling
and Efficient Maliciously Secure Two-Party Computation. Report Number:

030. 2017. url: https://eprint.iacr.org/2017/030 (visited on
21/03/2023).

[121] Xiao Wang, Samuel Ranellucci and Jonathan Katz. Global-Scale Secure
Multiparty Computation. Report Number: 189. 2017. url: https://ep
rint.iacr.org/2017/189 (visited on 21/03/2023).

[122] Andrew C. Yao. ‘Protocols for secure computations’. In: 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982). ISSN: 0272-

5428. Nov. 1982, pp. 160–164. doi: 10.1109/SFCS.1982.38.

[123] Samee Zahur and David Evans. Obliv-C: A Language for Extensible Data-
Oblivious Computation. Report Number: 1153. 2015. url: https://ep
rint.iacr.org/2015/1153 (visited on 21/03/2023).

[124] Nezer Zaidenberg et al. ‘Trusted Computing and DRM’. en. In: Cyber
Security: Analytics, Technology and Automation. Ed. by Martti Lehto and

Pekka Neittaanmäki. Intelligent Systems, Control and Automation: Sci-

ence and Engineering. Cham: Springer International Publishing, 2015,

pp. 205–212. isbn: 978-3-319-18302-2. doi: 10.1007/978-3-319-1
8302-2_13. url: https://doi.org/10.1007/978-3-319-18302
-2_13 (visited on 01/03/2023).

[125] Ning Zhang et al. ‘TruSense: Information Leakage from TrustZone’. In:

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.
Apr. 2018, pp. 1097–1105. doi: 10.1109/INFOCOM.2018.8486293.

[126] Wei Zheng et al. ‘A survey of Intel SGX and its applications’. en. In:

Frontiers of Computer Science 15.3 (Dec. 2020), p. 153808. issn: 2095-
2236. doi: 10.1007/s11704-019-9096-y. url: https://doi.or
g/10.1007/s11704-019-9096-y (visited on 02/03/2023).

83

https://doi.org/10.1145/3321705.3329848
https://doi.org/10.1145/3321705.3329848
https://doi.org/10.1145/3321705.3329848
https://eprint.iacr.org/2016/762
https://eprint.iacr.org/2017/030
https://eprint.iacr.org/2017/189
https://eprint.iacr.org/2017/189
https://doi.org/10.1109/SFCS.1982.38
https://eprint.iacr.org/2015/1153
https://eprint.iacr.org/2015/1153
https://doi.org/10.1007/978-3-319-18302-2_13
https://doi.org/10.1007/978-3-319-18302-2_13
https://doi.org/10.1007/978-3-319-18302-2_13
https://doi.org/10.1007/978-3-319-18302-2_13
https://doi.org/10.1109/INFOCOM.2018.8486293
https://doi.org/10.1007/s11704-019-9096-y
https://doi.org/10.1007/s11704-019-9096-y
https://doi.org/10.1007/s11704-019-9096-y

	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	Background
	Introduction
	Fundamentals
	Secret Sharing
	Secure Multiparty Computation
	Trusted Execution Environments

	Enabling Technologies
	Enabling Secure Multiparty Computation
	Enabling Intel SGX

	Related Work
	Improving SMPC Performance through TEE
	Enhancing Privacy in Empirical Studies

	Contribution
	Approach
	Using SGX for Hardening the Privacy of Empirical Studies
	Using SMPC for Hardening the Privacy of Empirical Studies
	Main Contribution: Combining TEEs and SMPC

	Implementation
	Requirements
	Choice of Technology

	Evaluation
	Methodology
	Results

	Discussion
	Findings
	Limitations & Future Work

	Summary & Conclusion
	Summary
	Conclusion

	Bibliography

